bsuir.info
БГУИР: Дистанционное и заочное обучение
(файловый архив)
Вход (быстрый)
Регистрация
Категории каталога
Другое [20]
Форма входа
Поиск
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Файловый архив
Файлы » МдЭ » Другое

Биохимия КР (реферат)
Подробности о скачивании 10.01.2012, 00:59
1. Белки, их структура и функции

Все белки являются высокомолекулярными полипептидами. Условную границу между крупными полипептидами и белками обычно проводят -в области мол. масс 8000-10000. Простые белки содержат только аминокислоты, а сложные - еще и неаминокислотные компоненты: гемоглобин, производные витаминов, липидные или углеводные компоненты. Белки играют центральную роль в процессах жизнедеятельности клеток (примером служат ферменты) и в формировании клеточных структур. Удовлетворительной универсальной системы классификации белков не существует. Имеется лишь несколько общеупотребительных систем классификации, частично противоречащих одна другой. С точки зрения ключевых свойств белков все они имеют ограниченную ценность.
Классификация белков, основанная на их растворимости, была введена в 1907-1908 гг. и используется до сих пор, особенно в клинической биохимии.
Альбумины
Растворимы в воде и солевых растворах. Не имеют особенностей в смысле содержания отдельных аминокислот

Глобулины
Слаборастворимы в воде. но хорошо растворимы в солевых растворах.
Не имеют особенностей в смысле содержания отдельных аминокислот

Проламины
Растворимы в 70-80%-ном этаноле, но нерастворимы в воде и в абсолютном этаноле. Богаты аргинином

Гистоны
Растворимы в солевых растворах

Склеропротеины
Нерастворимы в воде и солевых растворах. Повышено содержание Gly. Ala. Pro

СВЯЗИ, ОТВЕТСТВЕННЫЕ ЗА ФОРМИРОВАНИЕ СТРУКТУРЫ БЕЛКА
Первичная структура белков формируется в результате соединения L-а-аминокислот пептидными связями. Об этом свидетельствует множество различных данных, однако наиболее убедительным доказательством стал химический синтез инсулина и рибонуклеазы, осуществленный путем последовательного соединениянения аминокислот пептидными связями. Структура большинства белков стабилизируется двумя классами прочных связей (пептидных и дисульфидных) И тремя классами слабых связей (водородных, гидрофобных и электростатических, т. е. солевых).
В структурных формулах пептидов связь между карбонильной группой и атомом а-азота изображается как одинарная, однако на самом деле эта связь между атомами углерода и азота носит характер частично двойной связи. Свободное вращение вокруг нее невозможно, и все четыре атома належат в одной плоскости (компланарны). Вращение же вокруг остальных связей полипептидного остова, наоборот, достаточно свободно. Эта полужесткость ведет к важным последствиям, сказывающимся на более высоких уровнях структурной организации белка.
Дисульфидная связь образуется между двумя остатками цистеина и «сшивает» два участка полипептидной цепи (или цепей), которым принадлежат эти остатки. Эта связь остается стабильной в тех условиях, при которых белок обычно денатурирует. Обработка белка надмуравьиной кислотой (окисляющей связи S-S) или β-меркаптоэтанолом (восстанавливающим связи S-S с регенерацией двух остатков цистеина) приводит к разделению полипептидных цепей, связанных дисульфидными связями; их первичная структура при этом не затрагивается.
Водородные связи образуются 1) между группами, входящими в состав боковых цепей и способными к формированию водородных связей; 2) между атомами азота и кислорода, принадлежащими пептидным группам остова; 3) между полярными остатками, расположенными на поверхности молекулы белка, и молекулами воды. Все они играют важную роль в стабилизации вторичной, третичной и т. Д. структур белка.
Неполярные боковые цепи нейтральных аминокислот в белках имеют тенденцию к ассоциации. Стехиометрические соотношения при этом не соблюдаются, так что никаких связей в обычном смысле не возникает. Тем не менее эти взаимодействия играют важную роль в поддержании структуры белка.
Электростатические связи возникают между разноименно заряженными группами, входящими в состав боковых цепей аминокислот. Например, ε-аминогруппа лизина при физиологических рН несет заряд + 1, а карбоксильная группа аспартата или глутамата в составе боковой цепи несет заряд - 1. Следователльно, эти группы могут электростатически взаимодействовать, стабилизируя структуру белка.
УПОРЯДОЧЕННЫЕ КОНФОРМАЦИИ ПОЛИПЕПТИДОВ
а-Спираль.
Согласно рентгенографическим данным, полученным в начале 1930-х гг., а-кератины волос и шерсти обладают продольной периодичностью 0,5--0,55 нм. Однако в вытянутой полипептидной цепи расстояний, порождающих такую периодичность найти не удавалось. Это кажущееся противоречие было устранено Полингом и Кори, предположившими, что полипептидные цепи а-кератина имеют форму а-спирали. В этой структуре R-группы при а-углеродных атомах направлены от оси спирали. На один виток спирали приходится 3,6 аминокислотных остатка, а шаг спирали составляет 0,54 нм, что близко к периодичности 0,5-0,55 нм, наблюдаемой на дифракционных картинах. Смещение вдоль оси, приходящееся на один остаток, равно 0,15 нм, что тоже согласуется с рентгеновскими данными. Основные характеристики α-спирали сводятся к следующему: 1. а-Спираль стабилизируется водородными связями между атомом водорода, присоединенным к атому азота пептидной группы, и карбонильным кислородом остатка, отстоящего от данного вдоль цепи на четыре позиции. 2. В образовании водородной связи участвуют все пептидные группы. Это обеспечивает максимальную стабильность а-спирали. 3. В образование водородных связей вовлечены все атомы азота и кислорода пептидных групп, что в значительной мере снижает гидрофильность а-спиральных областей (и увеличивает их гидрофобность). 4. а-Спираль образуется самопроизвольно и является наиболее устойчивой конформацией полипептидной цепи, отвечающей минимуму свободной энергии. 5. В цепи из L-аминокислот правая спираль, обычно обнаруживаемая в белках, намного стабильнее левой. Некоторые аминокислоты препятствуют свертыванию цепи в а-спираль, и в месте их расположения непрерывность а-спирали нарушается. К ним относятся пролин (в нем атом азота служит частью жесткой кольцевой структуры, и вращение вокруг связи N - С становится невозможным), а также аминокислоты с заряженными или объемными R-группами, которые электростатически или механически препятствуют формированию а-спирали.
Складчатый β-слой
Полинг и Кори предложили и другую упорядоченную структуру - складчатый β-слой (обозначение р указывало, что предложенная ими структура является второй после а-спирали). В то время как в а-спирали полипептидная цепь находится в конденсированном состоянии, в складчатом β-слое цепи почти полностью вытянуты. В тех случаях, когда соседние полипептидные цепи складчатого β-слоя идут в противоположных направлениях (за положительное принимается направление от N- к С- концу), структуру называют антипараллельным складчатым β-слоем. Когда соседние цепи идут в одном направлении, структуру β-слоя называют параллельной. Области складчатой β-структуры имеются во многих белках, причем встречается и параллельная, и антипараллельная форма. В формировании таких структур могут участвовать от двух до пяти соседних полипептидных цепей. Во многих белках одновременно имеются и а-спирали, и складчатая Р-структура. В а-спирали стабилизирующие водородные связи образуются между пептидными группами, 'отстоящими одна от другой вдоль цепи на четыре остатка, а складчатая β-структура формируется благодаря образованию водородных связей между пептидами, удаленными по цепи намного дальше.
НЕУПОРЯДОЧЕННАЯ КОНФОРМАЦИЯ (клубок)
Те участки белковой молекулы, которые не относятся к спиральным или складчатым структурам, обычно называют неупорядоченными. В такой конформации может находиться значительная часть белковой молекулы. Термин «неупорядоченный » не вполне удачен: создается впечатление, что это указывает на меньшую биологическую значимость таких участков по сравнению с высокоупорядоченными периодическими. В то же время с точки зрения биологической функции неупорядоченные, нерегулярные участки-столь же важны, как и а-спирали и складчатые β-слои.
УРОВНИ СТРУКТУРНОЙ ОРГАНИЗАЦИИ БЕЛКА
Первичная структура
Под первичной структурой понимается последовательность аминокислот в полипептидной цепи (или цепях) и положение дисульфидных связей, если они имеются.
Вторичная структура
На этом структурном уровне описываются стерические взаимосвязи между расположенными близко друг к другу вдоль цепи аминокислотами. Вторичная структура может быть регулярной (а-спираль, складчатый β-слой) или не обнаруживать никаких признаков регулярности (неупорядоченная конформация).
Третичная структура
Общее расположение, взаимную укладку различных областей, доменов и отдельных аминокислотных остатков одиночной полипептидной цепи называют третичной структурой данного белка. Четкой границы между вторичной и третичной структурами провести нельзя, однако под третичной структурой понимают стерические взаимосвязи между аминокислотными остатками. далеко отстоящими друг от друга по цепи.
Четвертичная структура
Если белки состоят из двух и более полипептидных цепей, связанных между собой нековалентными (не пептидными и не дисульфидными) связями, то говорят, что они обладают четвертичной структурой. Такие агрегаты стабилизируются водородными связями и электростатическими взаимодействиями между остатками, находящимися на поверхности полипептидных цепей. Подобные белки называют олигомерами, а составляющие их индивидуальные полипептидные цепи - протомерами, мономерами или субъединицами. Многие олигомерные белки содержат два или четыре протомера и называются димерами или тетрамерами соответственно. Довольно часто встречаются олигомеры, содержащие более четырех протомеров, особенно среди регуляторных белков (пример транскарбамоилаза). Олигомерные белки играют особую роль во внутриклеточной регуляции: их протомеры могут слегка менять взаимную ориентацию, что приводит К изменению свойств олигомера. Наиболее изученный пример-гемоглобин.
ФУНКЦИИ
Белки можно классифицировать в соответствии с их биологическими функциями; например, можно подразделить белки на структурные, каталитические и транспортные. В свою очередь каталитические белки (ферменты), которые включают большинство различных типов белков, можно подразделить в соответствии с типом катализируемой ими реакции.
Каталитическая
Ферменты

Сократительная
Актин, миозин

Регуляция работы генов
Гистоны. негистоновые ядерные белки

Гормональная
Инсулин

Защитная
Фибрин, иммуноглобулины. интерферон

Регуляторная
Кальмодулин

Структурная
Коллаген. эластин, кератины

Транспортная
Альбумины (переносят билирубин, жирные кислоты и т. д.), гемоглобин (кислород), липопротеиды (различные липиды), трансферрин(железо)

2.Распад улеводов
Переваривание и всасывание улеводов
Расщепление крахмала (и гликогена) начинается в полости рта под действием амилазы слюны. Известны три вида амилаз, которые различаются главным образом по конечным продуктам их ферментативного действия: α-амилаза, β-амилаза и γ-амилаза. α-Амилаза расщепляет в полисахаридах внутренние α-1,4-связи, поэтому ее иногда называют эндоамилазой. Молекула α-амилазы содержит в своих активных центрах ионы Са2+, необходимые для ферментативной активности. Кроме того, характерной особенностью α-амилазы животного происхождения является способность активироваться одновалентными анионами, прежде всего ионами хлора. Под действием β-амилазы от крахмала отщепляется дисахарид мальтоза, т.е. β-амилаза является экзоамилазой. Она обнаружена у высших растений, где выполняет важную роль в мобилизации резервного (запасного) крахмала. γ-Амилаза отщепляет один за другим глюкозные остатки от конца полигликозидной цепочки. Различают кислые и нейтральные γ-амилазы в зависимости от того, в какой области рН они проявляют максимальную активность. В органах и тканях человека и млекопитающих кислая γ-амилаза локализована в лизосомах, а нейтральная – в микросомах и гиало-
плазме. Амилаза слюны является α-амилазой. Под влиянием этого фермента происходят первые фазы распада крахмала (или гликогена) с образованием декстринов (в небольшом количестве образуется и мальтоза). Затем пища, смешанная со слюной, попадает в желудок. Желудочный сок не содержит ферментов, расщепляющих сложные углеводы. В желудке действие α-амилазы слюны прекращается, так как желудочное содержимое имеет резко кислую реакцию (рН 1,5–2,5). Однако в более глубоких слоях пищевого комка, куда не сразу проникает желудочный сок, действие амилазы некоторое время продолжается и происходит расщепление полисахаридов с образованием декстринов и мальтозы.
Наиболее важная фаза распада крахмала (и гликогена) протекает в двенадцатиперстной кишке под действием α-амилазы поджелудочного сока. Здесь рН возрастает приблизительно до нейтральных значений, при этих условиях α-амилаза панкреатического сока обладает почти максимальной активностью. Этот фермент завершает превращение крахмала и гликогена в мальтозу, начатое амилазой слюны. Напомним, что в молекулах амилопектина и гликогена в точках ветвления существуют также α(1–>6)-гликозидные связи. Эти связи в кишечнике гидролизуются особыми ферментами: амило-1,6-глюкозидазой и олиго-1,6-глюкозидазой (терминальная декстриназа). Таким образом, расщепление крахмала и гликогена до мальтозы происходит в кишечнике под действием трех ферментов: панкреатической α-амилазы, амило-1,6-глюкозидазы и олиго-1,6-глюкозидазы. Образующаяся мальтоза оказывается только временным продуктом, так как она быстро гидролизуется под влиянием фермента мальтазы (α-глюкозидазы) на 2 молекулы глюкозы. Кишечный сок содержит также активную сахаразу, под влиянием которой из сахарозы образуются глюкоза и фруктоза *. Лактоза, которая содержится только в молоке, поддействием лактазы
кишечного сока расщепляется на глюкозу и галактозу. В конце концов углеводы пищи распадаются на составляющие их моносахариды (преимущественно глюкоза, фруктоза и галактоза), которые всасываются кишечной стенкой и затем попадают в кровь. Следует заметить, что активность свободных дисахаридаз в просвете кишечника невелика. Большая часть их ассоциирована с небольшими «выпуклостями» на щеточной каемке эпителиальных клеток кишечника. Напомним, что на внутренней поверхности тонкой кишки располагаются ворсинки. В тощей кишке человека на 1 мм2 поверхности приходится 22–40, в подвздошной – 18–30 ворсинок. Снаружи ворсинки покрыты кишечным эпителием, клетки которого имеют множественные выросты – микроворсинки (до 4000 на каждой клетке). На 1 мм2 поверхности тонкой
кишки у человека 80–140 млн микроворсинок. При соответствующей обработке препаратов над микроворсинками обнаруживается волокнистая сеть, представляющая собой гликопротеиновый комплекс – гликокаликс. В поверхностных слоях гликокаликса задерживаются крупные молекулы и бактерии. Полисахариды не проникают через гликокаликс и, оставшись нерасщепленными при полостном пище-
варении, гидролизуются на поверхности энтероцитов. Мальтоза, сахароза и лактоза могут гидролизоваться в гликокаликсе. Такое переваривание получило название пристеночного, или внеклеточного, пищеварения.
Маловероятным представляется всасывание значительных количеств дисахаридов, так как из экспериментов с парентеральным их введением известно, что большая часть дисахаридов, поступивших в кровяное русло, выделяется с мочой неизмененной; это является тем единственным и притом нефизиологическим случаем, когда дисахариды появляются в моче. Скорость всасывания отдельных моносахаридов различна. Глюкоза и галактоза всасываются быстрее, чем другие моносахариды. Принято
считать, что всасывание маннозы, ксилозы и арабинозы осуществляется преимущественно путем диффузии, всасывание же большинства других моносахаридов происходит за счет активного транспорта.
Щеточная каемка энтероцитов содержит системы переносчиков. Установлено существование переносчика, способного связывать различными своими участками глюкозу и Na+ и переносить их через плазматическую мембрану кишечной клетки. Считают, что глюкоза и Na+ высвобождаются затем в цитозоль, позволяя переносчику захватить новую порцию «груза». Na+ транспортируется по градиенту концентрации, стимулируя переносчик к транспорту глюкозы против указанного градиента. Свободная энергия, необходимая для этого активного транспорта, образуется благодаря гидролизу АТФ связанному с натриевым насосом, который «откачивает» из клетки Na+ в обмен на К+. Динамика происходящих при этом процессов пока остается недостаточно ясной и в настоящее время обстоятельно изучается.
Судьба всосавшихся моносахаридов. Более 90% всосавшихся моносахаридов (главным образом глюкоза) через капилляры кишечных ворсинок попадает в кровеносную систему и с током крови через воротную вену доставляется прежде всего в печень. Остальное количество моносахаридов поступает по лимфатическим путям в венозную систему. В печени значительная часть всосавшейся глюкозы превращается в гликоген, который откладывается в печеночных клетках в форме своеобразных, видимых под микроскопом блестящих гранул.

ГЛИКОЛИЗ
Гликолиз (от греч. glycys – сладкий и lysis – растворение, распад) – это последовательность ферментативных реакций, приводящих к превращению глюкозы в пируват с одновременным образованием АТФ. При аэробных условиях пируват проникает в митохондрии, где полностью окисляется до СО2 и Н2О. Если содержание кислорода недостаточно, как это может иметь место в активно сокращающейся мышце,
пируват превращается в лактат. Итак, гликолиз – не только главный путь утилизации глюкозы в клетках,
но и уникальный путь, поскольку он может использовать кислород, если последний доступен (аэробные условия), но может протекать и в отсутствие кислорода (анаэробные условия). Анаэробный гликолиз – сложный ферментативный процесс распада глюкозы, протекающий в тканях человека и животных без потребления кислорода. Конечным продуктом гликолиза является молочная кислота. В процессе гликолиза образуется АТФ. Суммарное уравнение гликолиза можно представить следующим образом:
С6Н12О6 + 2АДФ + 2ФН –> 2СН3СН(ОН)СООН + 2АТФ + 2Н2О.
В анаэробных условиях гликолиз – единственный процесс в животном организме, поставляющий энергию. Именно благодаря гликолизу организм человека и животных определенный период может осуществлять ряд физиологических функций в условиях недостаточности кислорода. В тех случаях, когда гликолиз протекает в присутствии кислорода, говорят об аэробном гликолизе *. Последовательность реакций анаэробного гликолиза, так же как и их промежуточные продукты, хорошо изучена. Процесс гликолиза катализируется одиннадцатью ферментами, большинство из которых выделено в гомогенном, клисталлическом или высокоочищенном виде и свойства которых достаточно известны. Заметим, что гликолиз протекает в гиалоплазме (цитозоле) клетки. Первой ферментативной реакцией гликолиза является фосфорилирование, т.е. перенос остатка ортофосфата на глюкозу за счет АТФ. Реакция катализируется ферментом гексокиназой:

Образование глюкозо-6-фосфата в гексокиназной реакции сопровождается освобождением значительного количества свободной энергии системы и может считаться практически необратимым процессом. Наиболее важным свойством гексокиназы является ее ингибирование глюкозо-6-фосфатом, т.е. последний служит одновременно и продуктом реакции, и аллостерическим ингибитором. Фермент гексокиназа способен катализировать фосфорилирование не только D-глюкозы, но и других гексоз, в частности D-фруктозы, D-маннозы и т.д. В печени, кроме гексокиназы, существует фермент глюкокиназа, который катализирует фосфорилирование только D-глюкозы. В мышечной ткани этот фермент отсутствует Второй реакцией гликолиза является превращение глюкозо-6-фосфата под действием фермента глюкозо-6-фосфат-изомеразы во фруктозо-6фосфат:

Эта реакция протекает легко в обоих направлениях, и для нее не требуется каких-либо кофакторов.
Третья реакция катализируется ферментом фосфофруктокиназой; образовавшийся фруктозо-6-фосфат вновь фосфорилируется за счет второй молекулы АТФ:

Данная реакция аналогично гексокиназной практически необратима, протекает в присутствии ионов магния и является наиболее медленно текущей реакцией гликолиза. Фактически эта реакция определяет скорость
гликолиза в целом. Фосфофруктокиназа относится к числу аллостерических ферментов. Она ингибируется АТФ и стимулируется АМФ *. При значительных величинах отношения АТФ/АМФ активность фосфофруктокиназы угнетается и гликолиз замедляется. Напротив, при снижении этого коэффициента интенсивность гликолиза повышается. Так, в неработающей мышце активность фосфофруктокиназы низкая, а концентрация АТФ относительно высокая. Во время работы мышцы происходит интенсивное потребление АТФ и активность фосфофруктокиназы повышается, что приводит к усилению процесса гликолиза. Четвертую реакцию гликолиза катализирует фермент альдолаза. Под влиянием этого фермента фруктозо-1,6-бисфосфат расщепляется на две фосфотриозы:

Эта реакция обратима. В зависимости от температуры равновесие устанавливается на различном уровне. При повышении температуры реакция сдвигается в сторону большего образования триозофосфатов (дигидроксиацетонфосфата и глицеральдегид-3-фосфата) *. Пятая реакция – это реакция изомеризации триозофосфатов. Катализируется ферментом триозофосфатизомеразой:

Равновесие данной изомеразной реакции сдвинуто в сторону дигидроксиацетонфосфата: 95% дигидроксиацетонфосфата и около 5% глицеральдегид-3-фосфата. В последующие реакции гликолиза может непосредственно включаться только один из двух образующихся триозофосфатов, а именно глицеральдегид-3-фосфат. Вследствие этого по мере потребления в ходе дальнейших превращений альдегидной формы фосфотриозы дигидроксиацетонфосфат превращается в глицеральдегид-3-фосфат.
Образованием глицеральдегид-3-фосфата как бы завершается первая стадия гликолиза. Вторая стадия – наиболее сложная и важная. Она включает окислительно-восстановительную реакцию (реакция гликолитической оксидоредукции), сопряженную с субстратным фосфорилированием, в про-
цессе которого образуется АТФ. В результате шестой реакции глицеральдегид-3-фосфат в присутст-
вии фермента глицеральдегидфосфатдегидрогеназы, кофермента НАД и неорганического фосфата подвергается своеобразному окислению с образованием 1,3-бисфосфоглицериновой кислоты ** и восстановленной формы НАД (НАДН). Эта реакция блокируется йод- или бромацетатом, протекает в несколько этапов:

1,3-Бисфосфоглицерат представляет собой высокоэнергетическое соединение (макроэргическая связь условно обозначена знаком «тильда» ~).Механизм действия глицеральдегидфосфатдегидрогеназы сводится к следующему: в присутствии неорганического фосфата НАД+ выступает как акцептор водорода, отщепляющегося от глицеральдегид-3-фосфата. В процессе образования НАДН глицеральдегид-3-фосфат связывается с молекулой фермента за счет SH-групп последнего. Образовавшаяся связь богата энергией, но она непрочная и расщепляется под влиянием неорганического фосфата, при этом образуется 1,3-бисфосфоглицериновая кислота. Седьмая реакция катализируется фосфоглицераткиназой, при этом
происходит передача богатого энергией фосфатного остатка (фосфатной группы в положении 1) на АДФ с образованием АТФ и 3-фосфоглицериновой кислоты (3-фосфоглицерат):

Таким образом, благодаря действию двух ферментов (глицеральдегидфосфатдегидрогеназы и фосфоглицераткиназы) энергия, высвобождающаяся при окислении альдегидной группы глицеральдегид-3-фосфата до карбоксильной группы, запасается в форме энергии АТФ. В отличие от окислительного фосфорилирования образование АТФ из высокоэнергетических соединений называется субстратным фосфорилированием. Восьмая реакция сопровождается внутримолекулярным переносом оставшейся фосфатной группы, и 3-фосфоглицериновая кислота превращается в 2-фосфоглицериновую кислоту (2-фосфоглицерат). Реакция легкообратима, протекает в присутствии ионов Mg2+. Кофактором фермента является также 2,3-бисфосфоглицериновая кислота аналогично тому, как в фосфоглюкомутазной реакции роль кофактора выполняет глюкозо-1,6-бисфосфат:

Девятая реакция катализируется ферментом енолазой, при этом 2-фосфоглицериновая кислота в результате отщепления молекулы воды переходит в фосфоенолпировиноградную кислоту (фосфоенолпируват), а фосфатная связь в положении 2 становится высокоэргической:

Енолаза активируется двухвалентными катионами Mg2+ или Мn2+ и ингибируется фторидом.
Десятая реакция характеризуется разрывом высокоэргической связи и переносом фосфатного остатка от фосфоенолпирувата на АДФ (субстратное фосфорилирование). Катализируется ферментом пируваткиназой:

Для действия пируваткиназы необходимы ионы Mg2+, а также одновалентные катионы щелочных металлов (К+ или др.). Внутри клетки реакция является практически необратимой. В результате одиннадцатой реакции происходит восстановление пировиноградной кислоты и образуется молочная кислота. Реакция протекает при участии фермента лактатдегидрогеназы и кофермента НАДН, образовавшегося в шестой реакции:


Реакция восстановления пирувата завершает внутренний окислительно восстановительный цикл гликолиза. НАД+ при этом играет роль промежуточного переносчика водорода от глицеральдегид-3-фосфата (6-я реакция) на пировиноградную кислоту (11-я реакция), при этом сам он регенерируется и вновь может участвовать в циклическом процессе, получившем название гликолитический оксидоредукции. Биологическое значение процесса гликолиза заключается прежде всего в образовании богатых энергией фосфорных соединений. На первых стадиях гликолиза затрачиваются 2 молекулы АТФ (гексокиназная и фосфофруктокиназная реакции). На последующих образуются 4 молекулы АТФ (фосфоглицераткиназная и пируваткиназная реакции). Таким образом, энергетическая эффективность гликолиза в анаэробных условиях составляет 2 молекулы АТФ на одну молекулу глюкозы. Как отмечалось, основной реакцией, лимитирующей скорость гликолиза, является фосфофруктокиназная. Вторая реакция, лимитирующая скорость и регулирующая гликолиз – гексокиназная реакция. Кроме того, контроль гликолиза осуществляется также ЛДГ и ее изоферментами. В тканях с аэробным метаболизмом (ткани сердца, почек и др.) преобладают изоферменты ЛДГ1 и ЛДГ2 (см. главу 4). Эти изоферменты ингибируются даже небольшими концентрациями пирувата, что препятствует образованию молочной кислоты и способствует более полному окислению пирувата (точнее, ацетил-КоА) в цикле трикарбоновых кислот. В тканях человека, в значительной степени использующих энергию гликолиза (например, скелетные мышцы), главными изоферментами являются ЛДГ5 и ЛДГ4. Активность ЛДГ5 максимальна при тех концентрациях пирувата, которые ингибируют ЛДГ1. Преобладание изоферментов ЛДГ4 и ЛДГ5 обусловливает интенсивный анаэробный гликолиз с быстрым превращением пирувата в молочную кислоту. Как отмечалось, процесс анаэробного распада гликогена получил название гликогенолиза. Вовлечение D-глюкозных единиц гликогена в процесс гликолиза происходит при участии 2 ферментов – фосфорилазы а и фосфоглюкомутазы. Образовавшийся в результате фосфоглюкомутазной реакции глюкозо-6-фосфат может включаться в процесс гликолиза. После образования глюкозо-6-фосфата дальнейшие пути гликолиза и гликогенолиза полностью совпадают:

В процессе гликогенолиза в виде макроэргических соединений накапливаются не две, а три молекулы АТФ (АТФ не тратится на образование глюкозо-6-фосфата). Кажется, что энергетическая эффективность гликогенолиза выглядит несколько более высокой по сравнению с процессом гликолиза, но эта эффективность реализуется только при наличии активной фосфорилазы а. Следует иметь в виду, что в процессе активации фосфорилазы b расходуется АТФ (см. рис. 10.2).
Спиртовое брожение
Спиртовое брожение осуществляется так называемыми дрожжеподобными организмами, а также некоторыми плесневыми грибками. Суммарную реакцию спиртового брожения можно изобразить следующим образом:
С6Н12O6 –> 2C2H5OH + 2СO2
Механизм реакции спиртового брожения чрезвычайно близок к гликолизу. Расхождение начинается лишь после этапа образования пирувата. При гликолизе пируват при участии фермента ЛДГ и кофермента НАДН
восстанавливается в лактат. При спиртовом брожении этот конечный этап заменен двумя другими ферментативными реакциями – пируватдекарбоксилазной и алкогольдегидрогеназной. В дрожжевых клетках (спиртовое брожение) пируват вначале подвергается декарбоксилированию, в результате чего образуется ацетальдегид. Данная реакция катализируется ферментом пируватдекарбоксилазой, который требует наличия ионов Mg и кофермента (ТПФ):

Образовавшийся ацетальдегид присоединяет к себе водород, отщепляемый от НАДН, восстанавливаясь при этом в этанол. Реакция катализируется ферментом алкогольдегидрогеназой:

Таким образом, конечными продуктами спиртового брожения являются этанол и СО2, а не молочная кислота, как при гликолизе. Процесс молочнокислого брожения имеет большое сходство со спиртовым
брожением. Отличие заключается лишь в том, что при молочнокислом брожении пировиноградная кислота не декарбоксилируется, а, как и при гликолизе в животных тканях, восстанавливается при участии ЛДГ за счет водорода НАДН. Известны 2 группы молочно-кислых бактерий. Бактерии одной группы в про-
цессе брожения углеводов образуют только молочную кислоту, а бактерии другой из каждой молекулы глюкозы «производят» по одной молекуле молочной кислоты, этанола и СО2. Существуют и другие виды брожения, конечными продуктами которых могут являться пропионовая, масляная и янтарная кислоты, а также другие соединения.
Включение других углеводов в процесс гликолиза
Фруктоза. Установлено, что фруктоза, присутствующая в свободном виде во многих фруктах и образующаяся в тонкой кишке из сахарозы, всасываясь в тканях, может подвергаться фосфорилированию во фруктозо-6-фосфат при участии фермента гексокиназы и АТФ:

Эта реакция ингибируется глюкозой. Образовавшийся фруктозо-6-фосфат либо превращается в глюкозу через стадии образования глюкозо-6-фосфата и последующего отщепления фосфорной кислоты (рис. 10.4), либо подвергается дальнейшим превращениям. Из фруктозо-6-фосфата под влиянием 6-фосфофруктокиназы и АТФ образуется фруктозо-1,6-бисфосфат:

Далее фруктозо-1,6-бисфосфат может подвергаться дальнейшим превращением по пути гликолиза. Таков главный путь включения фруктозы в метаболизм мышечной ткани, почек, жировой ткани. В печени, однако, для этого существует другой путь. В ней имеется фермент фруктокиназа, который катализирует фосфорилирование фруктозы не по 6-му, а по 1-му атому углерода:

Эта реакция не блокируется глюкозой. Образовавшийся фруктозо-1-фосфат расщепляется затем под действием кетозо-1-фосфатальдолазы на диоксиацетонфосфат и D-глицеральдегид: Фруктозо-1-фосфат <=> Диоксиацетонфосфат + D-глицеральдегид. Образовавшийся D-глицеральдегид под влиянием соответствующей киназы (триокиназы) подвергается фосфорилированию до глицеральдегид-3-фосфата. В этот же промежуточный продукт гликолиза переходит и дигидроксиацетонфосфат. Существует врожденная аномалия обмена фруктозы, или эссенциальная фруктозурия, которая связана с врожденным недостатком фермента фруктокиназы, т.е. в организме не образуется фруктозо-1-фосфат. В резуль-


тате обмен фруктозы возможен только путем фосфорилирования до фруктозо-6-фосфата, но эта реакция тормозится глюкозой, вследствие чего фруктоза накапливается в крови. «Почечный порог» для фруктозы очень низок, поэтому фруктозурия обнаруживается уже при концентрации фруктозы в крови 0,73 ммоль/л.
Галактоза. Основным источником галактозы является лактоза пищи, которая в пищеварительном тракте расщепляется до галактозы и глюкозы (рис. 10.5). Обмен галактозы начинается с превращения ее в галактозо-1-фосфат. Эта реакция катализируется галактокиназой с участием АТФ:

В следующей реакции в присутствии УДФ-глюкозы фермент гексозо-1-фосфатуридилилтрансфераза катализирует превращение галактозо-1-фосфата в глюкозо-1-фосфат, одновременно образуется уридиндифосфат-галактоза (УДФ-галактоза):

Образовавшийся глюкозо-1-фосфат в дальнейшем либо переходит в глюкозо-6-фосфат и далее подвергается уже известным превращениям, либо под влиянием фосфатазы образует свободную глюкозу, а УДФ-галактоза подвергается весьма своеобразной эпимеризации:

Затем УДФ-глюкоза-пирофосфорилаза катализирует расщепление УДФ-глюкозы с образованием глюкозо-1-фосфата:

О дальнейших превращениях глюкозо-1-фосфата см. ранее. Одно из патологических состояний, возникающих в результате нарушения обмена углеводов,– это рецессивно наследуемое заболевание га-
лактоземия. При этом заболевании общее содержание моносахаридов в крови повышается главным образом за счет уровня галактозы, достигая 11,1–16,6 ммоль/л. Концентрация глюкозы в крови существенно не изменяется. Кроме галактозы, в крови накапливается также галактозо-1-фосфат. Галактоземия приводит к умственной отсталости и катаракте хрусталика. Возникновение данной болезни у новорожденных связано недостатком фермента гексозо-1-фосфатуридилилтрансферазы. С возрастом наблюдается ослабление этого специфического нарушения обмена углеводов.

ПЕНТОЗОФОСФАТНЫЙ ПУТЬ ОКИСЛЕНИЯ
УГЛЕВОДОВ
Открытие пути прямого окисления углеводов, или, как его называют, пентозофосфатного цикла, принадлежит О. Варбургу, Ф. Липману, Ф. Дикенсу и В.А. Энгельгарду. Расхождение путей окисления углеводов – классического (цикл трикарбоновых кислот, или цикл Кребса) и пентозофосфатного – начинается со стадии образования гексозомонофосфата. Если глюкозо-6-фосфат изомеризуется во фруктозо-6-фосфат, который фосфорилируется второй раз и превращается во фруктозо-1,6-бисфосфат, то
в этом случае дальнейший распад углеводов происходит по обычному гликолитическому пути с образованием пировиноградной кислоты, которая, окисляясь до ацетил-КоА, затем «сгорает» в цикле Кребса. Если второго фосфорилирования гексозо-6-монофосфата не происходит, то фосфорилированная глюкоза может подвергаться прямому окислению до фосфопентоз. В норме доля пентозофосфатного пути в количественном превращении глюкозы обычно невелика, варьирует у разных организмов и зависит от типа ткани и ее функционального состояния. У млекопитающих активность пентозофосфатного цикла относительно высока в печени, надпочечниках, эмбриональной ткани и молочной железе в период лактации. Значение этого пути в обмене веществ велико. Он поставляет восстановленный НАДФН, необходимый для биосинтеза жирных кислот, холестерина и т.д. За счет пентозофосфатного цикла примерно на 50% покрывается потребность организма в НАДФН. Другая функция пентозофосфатного цикла заключается в том, что он

поставляет пентозофосфаты для синтеза нуклеиновых кислот и многих коферментов. При ряде патологических состояний удельный вес пентозофосфатного пути окисления глюкозы возрастает. Механизм реакций пентозофосфатного цикла достаточно расшифрован. Пентозофосфатный цикл начинается с окисления глюкозо-6-фосфата и последующего окислительного декарбоксилирования продукта (в результате от гексозофосфата отщепляется первый атом углерода). Это первая, так называемая окислительная, стадия пентозофосфатного цикла. Вторая стадия включает неокислительные превращения пентозофосфатов с образованием исходного глюкозо-6-фосфата (рис. 10.12). Реакции пентозофосфатного цикла протекают в цитозоле клетки. Первая реакция – дегидрирование глюкозо-6-фосфата при участии фермента глюкозо-6-фосфатдегидрогеназы и кофермента НАДФ+. Образовавшийся в ходе реакции 6-фосфоглюконо-δ-лактон – соединение нестабильное и с большой скоростью гидролизуется либо спонтанно, либо с помощью фермента 6-фосфоглюконолактоназы с образованием 6-фосфоглюконовой кислоты (6-фосфоглюконат):

Во второй – окислительной – реакции, катализируемой 6-фосфоглюконатдегидрогеназой (декарбоксилирующей), 6-фосфоглюконат дегидрируется и декарбоксилируется. В результате образуется фосфорилированнаякетопентоза – D-рибулозо-5-фосфат и еще 1 молекула НАДФН:

Под действием соответствующей эпимеразы из рибулозо-5-фосфата может образоваться другая фосфопентоза – ксилулозо-5-фосфат. Кроме того, рибулозо-5-фосфат под влиянием особой изомеразы легко превращается в рибозо-5-фосфат. Между этими формами пентозофосфатов устанавливается состояние подвижного равновесия:

При определенных условиях пентозофосфатный путь на этом этапе может быть завершен. Однако при других условиях наступает так называемый неокислительный этап (стадия) пентозофосфатного цикла. Реакции этого этапа не связаны с использованием кислорода и протекают в анаэробных условиях. При этом образуются вещества, характерные для первой стадии гликолиза (фруктозо-6-фосфат, фруктозо-1,6-бисфосфат, фосфотриозы), а другие – специфические для пентозофосфатного пути (седогептулозо-7-фосфат, пентозо-5-фосфаты, эритрозо-4-фосфат). Основными реакциями неокислительной стадии пентозофосфатного цикла являются транскетолазная и трансальдолазная. Эти реакции катализируют превращение изомерных пентозо-5-фосфатов:

Коферментом в транскетолазной реакции служит ТПФ, играющий роль промежуточного переносчика гликольальдегидной группы от ксилулозо-5-фосфата к рибозо-5-фосфату. В результате образуется семиуглеродный моносахарид седогептулозо-7-фосфат и глицеральдегид-3-фосфат. Транскетолазная реакция в пентозном цикле встречается дважды, второй раз – при образовании фруктозо-6-фосфата и триозофосфата в результате взаимодействия второй молекулы ксилулозо-5-фосфата с эритро-
зо-4-фосфатом:

Фермент трансальдолаза катализирует перенос остатка диоксиацетона (но не свободного диоксиацетона) от седогептулозо-7-фосфата на глицеральдегид-3-фосфат:

Шесть молекул глюкозо-6-фосфата, вступая в пентозофосфатный цикл, образуют 6 молекул рибулозо-5-фосфата и 6 молекул СО2, после чего из 6 молекул рибулозо-5-фосфата снова регенерируется 5 молекул глюкозо-6-фосфата (см. рис. 10.12). Однако это не означает, что молекула глюкозо-6-фосфата, вступающая в цикл, полностью окисляется. Все 6 молекул СО2 образуются из С-1-атомов 6 молекул глюкозо-6-фосфата. Валовое уравнение окислительной и неокислительной стадий пентозофосфатного цикла можно представить в следующем виде:


Образовавшийся НАДФН используется в цитозоле на восстановительные синтезы и, как правило, не участвует в окислительном фосфорилировании, протекающем в митохондриях. В последние годы появились работы, которые дают основание предполагать, что в некоторых тканях схема пентозофосфатного превращения углеводов сложнее, чем это представлено на рис. 10.12. Согласно этой более полной схеме пентозофосфатного пути, первые этапы превращения совпадают с прежней схемой, однако после первой транскетолазной реакции начинаются некоторые отклонения (рис. 10.13). Считают, что пентозофосфатный путь и гликолиз, протекающие в цитозоле, взаимосвязаны и способны переключаться друг на друга в зависимости от соотношения концентраций промежуточных продуктов, образовавшихся в клетке (см. рис. 10.13).

3. Биохимические анализаторы, принципы действия, определяемые параметры
(На основе технической характеристики автоматического биохимического анализатора BS-200)
Полностью автоматизированная система «открытого типа» со встроенной многоуровневой системой контроля качества выполнения анализов и русифицированным меню. Работа анализатора осуществляется на любых коммерчески доступных реактивах. Данная модель позволяет выполнять все виды биохимических анализов: ферменты, субстраты, электролиты, специфические белки, мониторинг лекарственных средств, метаболитов наркотических веществ. Анализатор имеет систему мониторинга всех рабочих систем и текущего состояния работы, защиту от кросс-контоминации, многоуровневую систему качества выполнения анализов. Анализатор BS-200 – это высокоточная автоматизированная система для лабораторий, выполняющих широкий спектр исследований в области клинической биохимии. Преимущества анализатора в создании с помощью программного обеспечения 5-ти виртуальных дисков для размещения образцов и реагентов. Контроль рабочих параметров анализатора, возможность загрузки и программирования до 200 тестов, моментальная сигнализация об отклонениях в работе системы – все это позволяет работать анализатору в автономном режиме, освобождая время оператору для решения других задач.
Фотометрическая работа анализатора основана на использовании многоканальной оптоволоконной оптики. 10 оптоволоконных каналов минимизируют электромагнитные помехи и увеличивают скорость измерения, что позволяет с высокой точностью и стабильностью быстро проводить измерения. 9 автоматически выбираемых интерференционных фильтров (340, 405, 450, 510, 546, 578, 630, 670, 700 нм) перекрывают потребности всей рутинной биохимии. 1 референсный канал позволяет учесть фон и отследить понижение работоспособности лампы. Измеряемый диапазон: - 0.1 – 4 Abs, с разрешением 0.0001 Abs. Источник света вольфрамово-галогеновая лампа 12V, 20W.
Принципы измерения: абсорбция, турбидиметрия. На анализаторе выполняются следующие типы реакций: кинетика, фиксированное время, конечная точка, что позволяет проводить одно, двух и трехкомпонентные реакции. Методы измерения: монохроматический и бихроматический.
Оператор имеет возможность программировать до 200 различных тестов и веществ, в том числе: ферменты, субстраты, электролиты, специфические белки, мониторинг лекарственных средств, мониторинг метаболитов наркотических средств.
Манипулятор реагента/образца с тефлоновым покрытием забирает точное количество реагента из определенного картриджа или пробирки и дозирует реагент или пробу в реакционную кювету. Зонд имеет внутреннюю и внешнюю промывку. В манипулятор встроен термоэлемент Пельтье, который прогревает, проходящую через него жидкость до температуры 37°С. Встроенный миксер перемешивает реакционную смесь в реакционной кювете. После перемешивания миксер перемещается на станцию промывки, где тщательно. Ротор измерительных кювет позволяет автоматически загружать/выгружать 80 кювет в измерительный блок с помощью транспортера линейного перемещения. Автоматическая система «бланк кюветы» позволяет производить контроль за чистотой каждой измерительной кюветы. Низкая стоимость каждой кюветы позволяет использовать их один раз. В измерительном блоке предусмотрена автоматическая система пре- и постразведения образцов в соотношении 150 раз. Программируемый измерительный объем 180-500мкл.

Съемный ротор для образцов и реагентов. Внутренний круг предназначен для размещения 40 позиций под реагенты. Автоматическая система четко отслеживает уровень реагентов в каждой позиции. Реагенты охлаждаются при температуре 4-10ºС. Независимый холодильник на борту, позволяет круглосуточно охлаждать реагенты даже при выключенном анализаторе, что существенно увеличивает стабильность и срок годности реагентов. Анализатор имеет возможность работать с моно- и биреагентными наборами. Автоматический контроль за расходом реагентов 30-450мкл, с шагом 1мкл. Внешний круг ротора предназначен для размещения 120 позиций под образцы при создании 5-ти виртуальных дисков. Отдельные 3 гнезда для калибраторов, 2 гнезда для контролей, 1 гнездо для разбавителя. Объем образца для измерения 3-45мкл, с шагом 0,5мкл. Оператор имеет возможность программирования неограниченного количества позиций для срочных образцов. При работе с образцами используются пробирки, педиатрические чашки, пробирки Эппендорф.
Производительность анализатора 200 тестов в час.База данных позволяет архивировать и сохранять до 40000 результатов анализов, в том числе срочных тестов. Оператор имеет возможность работы с архивом статистических данных.
Анализатор имеет автоматическую многоуровневую систему контроля качества выполняемых тестов: X-R, L-J, Westquard multi-rule, cumulative sum chek, Twin plot. Выбор методов калибровки: по фактору, линейной, от точки к точки, сплайн, логарифмической, экспоненциальной. Мониторинг в реальном времени кривой реакции, с одновременным показом данных на первой и второй длинах волн, без интерференции. Детализированный профиль аварийных сообщений. Оперативный диагноз системного рабочего статуса каруселей проб, реагентов и реакционной системы, остаточного объема реактивов и кривой температуры реакции, оптимизация последовательности тестов.
Программа управления анализатором работает под операционной системой Windows. Программа очень удобна и легко осваивается оператором. Основные функции программы: формирование тестов, регистрация пациентов, формирование рабочих листов, контроль хода реакции, расчеты концентрации, распечатка результатов, формирование базы данных по пациентам.
Не требуется подключение к центральному водоснабжению. В анализаторе имеются две емкости: под дистиллированную воду и для отходов. Каждая емкость имеет объем 10 литров. Анализатор автоматически осуществляет контроль за уровнем жидкости в каждой емкости, со звуковой и визуальной сигнализацией. Потребление воды 3 литра в час.
Питание анализатора от сети переменного напряжения 130-240В, 50-60Гц.
Размеры анализатора 86 х 68 х 62 см.
Интерфейс порты входа/выхода: RS232 для подключения к дополнительному компьютеру или сети клиники, порт для дополнительного принтера, порт для дополнительного внешнего сканера штриховых BAR-кодов.
Категория: Другое | Добавил: ascorn
Просмотров: 2585 | Загрузок: 5
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]