bsuir.info
БГУИР: Дистанционное и заочное обучение
(файловый архив)
Вход (быстрый)
Регистрация
Категории каталога
Другое [37]
Белорусский язык [248]
ВОВ [92]
Высшая математика [468]
Идеология [114]
Иностранный язык [633]
История Беларуси [248]
Культурология [42]
Логика [259]
НГиИГ [120]
Основы права [8]
Основы психологии и педагогики [7]
Охрана труда [7]
Политология [179]
Социология [120]
Статистика [31]
ТВиМС [83]
Техническая механика [43]
ТЭЦ [85]
Физика [146]
Философия [169]
Химия [76]
Экология [35]
Экономика предприятия [35]
Экономическая теория [170]
Электротехника [35]
ЭПиУ [44]
Этика [5]
Форма входа
Поиск
Статистика

Онлайн всего: 73
Гостей: 73
Пользователей: 0
Файловый архив
Файлы » Общевузовские предметы » Логика

вариан 23
Подробности о скачивании 06.11.2011, 11:08
ТЕМА 23. Индуктивные умозаключения

План
1. Понятие недедуктивного вывода.
2. Полная и неполная индукция. Схемы вывода и достоверность обобщения.
3. Основные ошибки индуктивных выводов.

Упражнения
1. Определите вид и схему индуктивного умозаключения, найдите посылки и заключение, установите правильность обобщения:
1.1. На подносе много булочек. Первая – свежая и мягкая, вторая – тоже, третья – свежая и мягкая... Значит, все булочки на подносе – свежие и мягкие (пример Л. Кэрролла).
1.2. В семье Х двое детей. Папа и мама – музыканты. Их дети учатся в музыкальной школе. Заключаем: «Вся семья Х – музыкальная».
1.3. Лабораторные пробы воды в водной системе позволяют заключить, что питьевая вода в Минске соответствует санитарно-гигиеническим нормам.
1.4. В студенческой группе 30 человек. 25 из них прошли флюорографию, и у них патологии не обнаружено. Вероятно, вся группа здорова.

Содержание:

Введение……………………………………………………….…………………..4
Понятие недедуктивного вывода………………………………….……………..5
Полная и неполная индукция. Схемы вывода и достоверность обобщения……....8
Основные ошибки индуктивных выводов…………………………………..…13
Практическая часть……………………………………………………………...18
Заключение……………………………………………………….………………20
Список литературы………………………………………………………….….. 21

Введение
Еще более сложной формой мышления, чем суждение, является умозаключение. Оно содержит в своем составе суждения (а следовательно, и понятия), но не сводится к ним, а предполагает еще их определенную связь. Благодаря этому и образуется качественно особая форма с ее специфическими функциями в мышлении.
Формально-логический анализ этой формы означает ответ на следующие основные вопросы: в чем сущность умозаключений и какова их роль и структура; что представляют собой их основные типы, в каких взаимоотношениях между собой они находятся; наконец, какие логические операции с ними возможны.
Значение подобного анализа определяется тем, что именно в умозаключениях (и основанных на них доказательствах) сокрыта «тайна» принудительной силы речей, которая поражала людей еще в древности и с постижения которой началась логика как наука. Именно умозаключения обеспечивают то, что мы называем в настоящее время «силой логики». Вот почему нередко логику именуют «наукой о выводном знании». И в этом есть значительная доля истины. Ведь весь предшествующий анализ понятий и суждений, хотя и важный сам по себе, в полной мере раскрывает все свое значение лишь в связи с их логическими функциями по отношению к умозаключениям (а значит, и доказательствам).
Теория умозаключений -наиболее тщательно и глубоко разработанная часть логики. Когда на экзамене по логике одной из отвечающих был задан вопрос: «Что больше всего Вам понравилось в логике?», она ответила: «Умозаключение. Это очень красивая теория. Здесь одно вытекает из другого». И она права. Добавим от себя, что это еще очень практичная теория, дающая нам в руки могущественное орудие познания и общения.

1. Понятие недедуктивного вывода

Опосредованные недедуктивные выводы, как и опосредованные дедуктивные – это выводы из более чем одной посылки.
Значительную часть опосредованных недедуктивных выводов составляют выводы по аналогии (от греч. Пропорция, соразмерность).
Аналогия – это умозаключение, осуществляющее перереход от сходства одних предметов к другим предметам. Т.е., вывод по аналогии, или просто аналогия – это вывод, характеризующийся переносом признака одного предмета на другой предмет, подобный первому. Предмет, признак которого переносится, называется моделью. Предмет, на который переносится признак другого предмета, называется прототипом или оригиналом.
Вывод по аналогии основан на отношении совместимости – сцеплении. Аналогия находит широкое применение в человеческой деятельности, но истинность заключений по аналогии крайне ненадежна.
Выводы по аналогии дают достоверные результаты, если между сопоставляемыми системами, т.е. моделью и прототипом, имеется отношение изоморфизма или гомоморфизма.
Модель и прототип изоморфны тогда и только тогда, когда каждому элементу, свойству или отношению модели соответствует единственный элемент, свойство или отношение прототипа, и наоборот. При отсутствии обратного отношения модель и прототип будут гомоморфны. Отношение изоморфизма рефлексивно, симметрично и транзитивно, отношение гомоморфизма – рефлексивно и транзитивно, но не симметрично. Как правило, всякая модель изоморфна сущностным характеристикам прототипа, но гомоморфна относительно всех его характеристик.
Для выводов по аналогии характерна ошибка «слишком далекая аналогия». Как правило, она возникает при выводах, основанных на чисто внешнем и поверхностном сходстве предметов. Чем более разнородны предметы, взятые в качестве модели и прототипа, тем выше вероятность такой ошибки.
Аналогия глубоко укоренена в культурном опыте человечества. Мыслительные схемы, выработанные в процессе многовековой практики человечества переносятся на рассуждения с самым разнообразным содержанием. При решении новых задач, как известно, используются методы и средства, оправдавшие себя ранее. Укорененность аналогии в человеческой мыслительной практике хорошо прослеживается на примере мифологического сознания. Многие явления природы находят свое объяснение по аналогии с предметами, уже известными. С этим связана такая черта мифологического сознания, как антропоморфизм. Когда за явлениями природы стоят антропоморфные, на более ранней стадии развития культуры – зооморфные, божества, отношения между которыми воспроизводят отношения людей.
Аналогия является логической основой метода моделирования. Метод моделирования состоит в использовании модели при исследовании некоторых процессов, отношений и т.д.
Знаковый или технический феномен А называют моделью другого феномена В, отличающегося от А по ложности, материалу, разметам или иным признакам, если существует определенная функциональная зависимость y = f(x), где f совокупность логических, математических и иных операций, такая, что при подстановке на место х некоторых описаний, свойств, структурных характеристик а, мы каждый раз получаем на месте y определенное описание некоторых свойств, структурных характеристик, верных для В- сравнительная простота модели, если при этом не допускаются потери информации, – основное ее преимущество, которое позволяет экономить время, силы и средства, необходимые для получения результата. Не менее важно то, что модель фиксирует наиболее существенные свойства образца. Создание модели предполагает отвлечение, абстрагирование, от второстепенных, случайных, привнесенных свойств. И то обстоятельство, что она создается с учетом существенных фактов, делает ее средством получения близкого к достоверному знанию.
Модели бывают прямые – когда результаты измерений на макете прямо переносятся на исследуемый объект путем прямого умножения на коэффициент пропорциональности, и косвенные – наглядный пример – математические модели в научной теории.
Близкой к умозаключению по аналогии выступает метафора, которая также связана с переносом одних свойств предметов на другие. Основная ценность метафоры в том, что для нее подбираются непохожие предметы. Метафоры всегда имеют знаковый характер и относится к области художественного творчества.

2. Полная и неполная индукция. Схемы вывода и достоверность обобщения.
Основная функция индуктивных выводов в процессе познания —генерализация, т.е. получение общих суждений. По своему содержанию и познавательному значению эти обобщения могут носить различный характер — от простейших обобщений повседневной практики до эмпирических обобщений в науке или универсальных суждений, выражающих всеобщие законы.
История науки показывает, что многие открытия в микроэкономике были сделаны на основе индуктивного обобщения эмпирических данных. Индуктивная обработка результатов наблюдений предшествовала классификации спроса и предложения.
Индуктивным обобщениям обязаны многие гипотезы в современной науке.
Полнота и законченность опыта влияют на строгость логического следования в индукции, предопределяя, в конечном счете, демонстративность или недемонстративность этих умозаключений.
В зависимости от полноты и законченности эмпирического исследования различают два вида индуктивных умозаключений: полную индукцию и неполную индукцию. Рассмотрим их особенности.
Полная индукция
Полная индукция — это умозаключение, в котором на основе принадлежности каждому элементу или каждой части класса определенного признака делают вывод о его принадлежности классу в целом.
Индуктивные умозаключения такого типа применяются лишь в тех случаях, когда имеют дело с закрытыми классами, число элементов, в которых является конечным и легко обозримым. Например, число государств в Европе, количество промышленных предприятий в данном регионе, число нормальных предметов в этом семестре и т.п.
Представим, что перед комиссией поставлена задача проверить знания такой интереснейшей дисциплины как логика в группе 081521. Известно, что в его состав входят 25 студентов. Обычный способ проверки в таких случаях — анализ знаний каждого из 25 студентов. Если окажется, что все они знают предмет, то тем самым можно сделать обобщающее заключение: все студенты группы 081521 отлично знают логику.
Выраженная в посылках этого умозаключения информация о каждом элементе или каждой части класса служит показателем полноты исследования и достаточным основанием для логического переноса признака на весь класс. Тем самым вывод в умозаключении полной индукции носит демонстративный характер. Это означает, что при истинности посылок заключение в выводе будет необходимо истинным.
В одних случаях полная индукция дает утвердительные заключения, если в посылках фиксируется наличие определенного признака у каждого элемента или части класса. В других случаях в качестве заключения может выступать отрицательное суждение, если в посылках фиксируется отсутствие определенного признака у всех представителей класса.
Познавательная роль умозаключения полной индукции проявляется в формировании нового знания о классе или роде явлений. Логический перенос признака с отдельных предметов на класс в целом не является простым суммированием. Знание о классе или роде — это обобщение, представляющее собой новую ступень по сравнению с единичными посылками.
Демонстративность полной индукции позволяет использовать этот вид умозаключения в доказательном рассуждении. Применимость полной индукции в рассуждениях определяется практической перечислимостью множества явлений.
Если невозможно охватить весь класс предметов, то обобщение строится в форме неполной индукции.
Неполной индукцией
Неполной индукцией называется вид индуктивного умозаключения, в результате которого получается какой-либо общий вывод обо всем классе предметов на основании знания лишь некоторых однородных предметов данного класса.
Например:
Гелий имеет валентность, равную нулю;
Неон тоже;
Аргон тоже;
Но гелий, неон и аргон — инертные газы;
Все инертные газы имеют валентность, равную нулю.
Здесь общий вывод сделан обо всем классе инертных газов на основании знания о некоторых видах, т.е. части этого класса. Поэтому неполную индукцию иногда называют расширяющей индукцией, так как она в своем заключении содержит большую информацию, чем та, которая содержалась в посылках. Схема умозаключения неполной индукции такова:
A 1 имеет признак В;
А 2 имеет признак В;
А 3 имеет признак В;
Следовательно, и А 4 и вообще все А имеют признак В.
В неполной индукции на основании наблюдения некоторого количества известных фактов приходят к выводу, который распространяется и на другие факты или предметы данной области, еще неизвестные нам.
Неполная индукция выступает в двух видах.
-Неполная индукция, основанная на знании необходимых признаков и причинных связей предметов, явлений, — вид индуктивного умозаключения, в результате которого получается какой-либо общий вывод обо всем классе предметов на основании знания необходимых признаков и причинных связей лишь некоторых предметов данного класса.
-Неполная индукция через простое перечисление, в котором не встречается противоречащих случаев, — вид индуктивного умозаключения, в результате которого получается какой-либо общий вывод обо всем классе предметов на основании знания лишь некоторых предметов данного класса, при том условии, что не встречалось противоречащих случаев. Неполная индукция через простое перечисление дает нам возможность перейти от известных фактов к неизвестным, и этим самым с ее помощью мы расширяем наши знания о мире.
Но такая индукция не дает в заключении, в общем правиле достоверных выводов, а только приблизительные, вероятные. Ведь выводы в данном случае базируются на наблюдении далеко не всех предметов данного класса. И могло случиться, что противоречащий пример случайно не попался нам на глаза. А часто это бывает только потому, что мы еще плохо знаем исследуемую область явлений.
Железо — твердое тело;
Медь — твердое тело;
Цинк — твердое тело;
Золото — твердое тело;
Алюминий — твердое тело;
Железо, медь, цинк, золото, алюминий — металлы;
Все металлы — твердые тела.
Вывод сделан по методу индукции через простое перечисление, в котором не встречается противоречащих случаев. Исследован ряд металлов, а вывод сделан в отношении всех. В результате получился ошибочный вывод, так как, например, ртуть — металл, но она — жидкое тело.
Индукция через простое перечисление, принося известную пользу в нашей повседневной житейской практике, может применяться лишь на начальной ступени исследования, когда происходит процесс накопления фактического материала и совершается первый отбор нужных данных. Она называется популярной индукцией. Издавна популярная индукция считалась самым ненадежным видом неполной индукции. Вероятность ее заключения крайне слабо обоснована, так как единственное основание для ее вывода состоит в незнании случаев, которые противоречили бы ее заключению.
Заключение, полученное в результате такой индукции, постоянно находится под угрозой опровержения его истинности, стоит только обнаружиться противоречащему случаю, как это было с австралийскими черными лебедями, открытие которых опрокинуло державшееся столетиями утверждение, что все лебеди белые. В речевой коммуникации желательно пользоваться только полной индукцией, потому что неполная индукция действительно часто приводит к доказательству неверных тезисов.

3. Основные ошибки индуктивных выводов.
Чем ближе исследованный образец ко всему классу, тем основательнее, а значит, и вероятнее будет индуктивное обобщение.
В условиях, когда исследуются лишь некоторые представители класса, не исключается возможность ошибочного обобщения. Примером этому может служить полученное с помощью популярной индукции и долгое время, бытовавшее в Европе обобщение «Все лебеди белые». Оно строилось на основе многочисленных наблюдений при отсутствии противоречащих случаев. После того как высадившиеся в Австралии в XVII в. европейцы обнаружили черных лебедей, генерализация оказалась опровергнутой.
Ошибочные заключения о выводах популярной индукции могут появиться по причине несоблюдения требований об учете противоречащих случаев, которые делают обобщение несостоятельным.
Ошибочные индуктивные заключения могут появляться не только в результате заблуждения, но и при недобросовестном, предвзятом обобщений, когда сознательно игнорируют или скрывают противоречащие случаи.
Некорректно построенные индуктивные сообщения нередко лежат в основе различного рода суеверий, невежественных поверий и примет вроде «дурного глаза», «хороших» и «дурных» сновидений, перебежавшей дорогу черной кошки и т.п.
Безошибочность вывода в индуктивном умозаключении зависит, прежде всего, от истинности посылок, на которых строится заключение. Если вывод основан на ложных посылках, то и он ложен. Ошибки в индуктивных умозаключениях очень часто объясняются также тем, что в посылках не учтены все обстоятельства, которые являются причиной исследуемого явления.
Но ошибки могут проникать в индуктивные выводы и тогда, когда посылки являются истинными. Это бывает в тех случаях, когда мы не соблюдаем правил умозаключения, в которых отображены связи единичного и общего, присущие предметам и явлениям окружающего мира. Первая ошибка, связанная с нарушением правил самого хода индуктивного умозаключения в связи с непониманием закона достаточного основания, известна издавна под названием "поспешное обобщение" (лат. fallacia fictae universalitatis ). Существо ошибки заключается в следующем: в посылках не учтены все обстоятельства, которые являются причиной исследуемого явления.
Еще более распространенной в индуктивных выводах является ошибка, также связанная с нарушением закона достаточного основания, которая называется ошибкой заключения по формуле: "после этого, стало быть, по причине этого" (лат. "Post hoc, ergo propter hoc"). Источник этой ошибки — смешение причинной связи с простой последовательностью во времени. Иногда кажется, что если одно явление предшествует другому, то оно и является его причиной. Но это не всегда так. Каждые сутки люди наблюдают, что за ночью следует день, а за днем — ночь. Но если бы на основании этого кто-нибудь стал утверждать, что ночь есть причина дня, а день — причина ночи, то тот оказался бы рассуждающим по формуле "после этого, стало быть, по причине этого". В самом деле, ни ночь не является причиной дня, ни день не является причиной ночи. Смена дня и ночи есть результат суточного вращения Земли вокруг собственной оси. Следовательно, неправомерно заключать о причинной связи двух явлений только на том основании, что одно явление происходит после другого.
Индуктивное доказательство применяется во всех науках, когда тезис является общим суждением. Вот пример индуктивного доказательства тезиса о том, что во всех треугольниках сумма внутренних углов равна двум прямым.
Аргументы: "в остроугольных треугольниках сумма внутренних углов равна двум прямым"; "в прямоугольных треугольниках сумма внутренних углов равна двум прямым"; "в тупоугольных треугольниках сумма внутренних углов равна двум прямым".
Рассуждение: "поскольку, кроме остроугольных, тупоугольных и прямоугольных треугольников, нет больше никаких треугольников, а во всех остроугольных, тупоугольных и прямоугольных треугольниках сумма внутренних углов равна двум прямым, то, следовательно, во всех треугольниках сумма внутренних углов равна двум прямым".
Существо такого доказательства заключается в следующем: надо получить согласие своего собеседника на то, что каждый отдельный предмет, входящий в класс предметов, отображаемый в общем суждении, имеет признак, зафиксированный в нем. Когда согласие на это получено, тогда с необходимостью вытекает истинность тезиса: раз каждый предмет в отдельности имеет этот признак, то естественно, что и все данные предметы имеют этот признак.
Резюмируя, следует сказать, что индуктивное доказательство выводит наличие некоторого свойства S у множества М, состоящего из n элементов, на основании того, что каждый из этих элементов обладает свойством S . Если мы хотим сделать заключение о целом множестве объектов (людей, предметов и т.д.), мы должны рассмотреть каждый элемент этого множества. А отсюда делается естественный и простой вывод: индуктивному доказательству подвергаются только те множества, которые имеют малое количество элементов. Если множество имеет бесконечное количество элементов, строгое индуктивное доказательство построить невозможно. Если количество элементов множества очень велико, но конечно, строгое индуктивное доказательство построить можно, но это очень трудоемкая, а потому обычно малоцелесообразная деятельность, так как каждый элемент в отдельности следует оценить с точки зрения наличия искомого признака. Поэтому строгое индуктивное доказательство распространяется только на так называемые маломощные множества (под мощностью множества понимается количество элементов, входящих в него). Множество мощностью 4 легко подвергается индуктивному доказательству, множество мощностью 100 — уже достаточно трудно, а множество мощностью 10000 почти не подвергается такому доказательству. Индуктивным способом невозможно доказать, скажем, тезис о том, что все москвичи умеют говорить по-русски. Но очень легко можно доказать тезис о том, что в определенной комнате нет ни одного битого стекла, если в этой комнате, скажем, два окна, каждое окно имеет четыре стекла (всего стекол, таким образом, восемь). Можно рассмотреть первое стекло — нет трещин. Рассмотреть второе стекло — нет трещин и т.д. Удостоверившись, что каждое стекло — целое, можно сделать общий вывод: в этой комнате нет ни одного битого стекла, что важно, например, в условиях надвигающейся зимы для принятия решения о замене стекол в помещении.
Наблюдения показывают, что индуктивное доказательство часто вызывает затруднение. Приведем два примера.
У комнатного цветка 20 листьев. Посмотрим на первый лист: он живой. Посмотрим па второй лист: он живой и т.д. Посмотрим на двадцатый лист: он живой. Значит, можно сделать вывод, что цветок жив. Это неправильно. Ведь если у цветка хотя бы один листик жив, то весь цветок является живым (приведено излишнее доказательство). В логике эта ошибка звучит так: "кто чрезмерно доказывает, тот ничего не доказывает" (лат. qui nimium probat , nihil probat ) — когда доказывается слишком много, из данных оснований следует не только тезис, но и какое-нибудь другое (иногда противоположное или ложное) положение.
Рассмотрим тезис: Семья Петровых — хорошая. Отец — академик. Мать — профессор. Дочь — очень способная девушка, аспирантка. Сын — подающий надежды молодой физик. Доказательство не получается, потому что хорошая семья — это семья, в которой сохраняются доброжелательные человеческие отношения. Чтобы доказать индуктивным способом искомый тезис, надо установить пары: мама — дочка, мама — сын, папа — дочка, папа — сын, сын — дочка, папа — мама. После этого проанализировать отношения в каждой паре, признать эти отношения благополучными и тогда сделать заключение, что это хорошая семья (и то это будет достаточно неубедительно). Гораздо легче доказать тезис: В семье Петровых все имеют высшее образование. А критерий быть хорошей не является формальным (это вопрос интерпретации), кроме того, слово хороший многозначно. Один человек, наблюдая семью, назовет отношения в ней прекрасными, другой сочтет неблагополучными. Семейные отношения бесконечно сложны: даже драка может быть свидетельством любви. Подобные тезисы лучше оставлять без доказательства. Их истинность или ложность докажет сама жизнь.


Практическая часть:
Упражнения
1. Определите вид и схему индуктивного умозаключения, найдите посылки и заключение, установите правильность обобщения:
1.1. На подносе много булочек. Первая – свежая и мягкая, вторая – тоже, третья – свежая и мягкая... Значит, все булочки на подносе – свежие и мягкие (пример Л. Кэрролла).
1-булочка свежая и мягкая А1 имеет признак В
2-булочуа свежая и мягкая А2 имеет признак В
3-булочка свежая и мягкая А3 имеет признак В
. .
. .
. .
n-булочка свежая и мягкая Аn имеет признак В
Все булочки свежие и мягкие Следовательно все А имеют признак В
Неполная индукция, основанная на знании необходимых признаков и причинных связей предметов.

1.2. В семье Х двое детей. Папа и мама – музыканты. Их дети учатся в музыкальной школе. Заключаем: «Вся семья Х – музыкальная».
Папа- музыкант
Мама- музыкант
1 ребенок - учится в музыкальной школе- следовательно музыкант
2 ребенок - учится в музыкальной школе- следовательно музыкант
Следовательно вся семья Х мызыканты
А1 имеет признак В
А2 имеет признак В
А3 имеет признак В
А4 имеет признак В
Следовательно все А имеют признак В
Зная что в семье Х больше нет человек, кроме упомянутых в посылках, вполне правомерно сделать вывод: «Вся семья Х музыуальная»
Это полная индукция, т.к. мы имеем дело с закрытым числом элементов.

1.3. Лабораторные пробы воды в водной системе позволяют заключить, что питьевая вода в Минске соответствует санитарно-гигиеническим нормам.
Если у нас будут доказательства в качестве и у нас будут доказательства в достоверности этого суждения, и в качестве лабораторных исследований, то мы будем уверены в том что вода в Минске соответствует санитарно- гигиеническим нормам.

1.4. В студенческой группе 30 человек. 25 из них прошли флюорографию, и у них патологии не обнаружено. Вероятно, вся группа здорова.
1человек - здоров
2человек – здоров
3человек - здоров
.
.
.
25человек – здоров
Следовательно существует вероятность того что и все 30 студентов здоровы.
А теперь представим что 2 из 5 студентов не прошедших флюорографию больны, следовательно не вся группа будет здоровой.
Это неполная индукция через простое перечисление (популярная индукция).
Заключение:
В данной контрольной работе я рассмотрела одну из форм мышления - умозаключение, которое широко используется в нашей жизни. В науке и практической деятельности при выяснении причин или свойств единичных предметов и событий мы вынуждены обращаться не только к законам и научным обобщениям, но и к раннее приобретенным знаниям о сходных единичных явлениях, когда соответствующие обобщения еще не получены. Отсюда и возникает необходимость пользования такой формы вывода, как аналогия. При этом, чем меньшим запасом знаний обладает человек, чем чаще он судит о новых явлениях по аналогии с раннее встречавшимися единичными случаями.
Умозаключения по аналогии выполняют особую роль в науках общественно-исторических, приобретая не редко значения единственно возможного метода исследования.
Не располагая достаточным фактическим материалом, историк нередко объясняет малоизвестные исторические факты, события и обстановку путем их уподобления раннее исследованным событиям и фактам из жизни других народов при наличии сходства в уровне развития экономики, культуры, политической организации общества и т.п.
Существенная роль умозаключения по аналогии в марксистской науке о революции при выработке революционной партии стратегических задач и определении тактической линии конкретных общественно - исторических условиях. Аналогиями часто пользовались основоположники марсизма-ленинизма.
Умозаключения тем более важны для понимания будущего, которые наблюдать еще нельзя. В общественной жизни предвидения, прогнозы, цели человеческой деятельности тоже невозможны без определенных выводов – о тенденциях развития действовавших в прошлом и действующих в настоящее время, прокладывающих путь в будущее.

Список литературы:
1 Берков В.Ф., Яскевич Я.С., Павлюкевич В.И. Логика. Минск, 1997.
2 Кобзарь В.И. Основы логических знаний. СПб., 1994;
3 Минто В. Дедуктивная и индуктивная логика, 5-е изд. М., 1905.
Категория: Логика | Добавил: mulan2508
Просмотров: 2428 | Загрузок: 21
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]