bsuir.info
БГУИР: Дистанционное и заочное обучение
(файловый архив)
Вход (быстрый)
Регистрация
Категории каталога
Другое [37]
Белорусский язык [248]
ВОВ [92]
Высшая математика [468]
Идеология [114]
Иностранный язык [633]
История Беларуси [248]
Культурология [42]
Логика [259]
НГиИГ [120]
Основы права [8]
Основы психологии и педагогики [7]
Охрана труда [7]
Политология [179]
Социология [120]
Статистика [31]
ТВиМС [83]
Техническая механика [43]
ТЭЦ [85]
Физика [146]
Философия [169]
Химия [76]
Экология [35]
Экономика предприятия [35]
Экономическая теория [170]
Электротехника [35]
ЭПиУ [44]
Этика [5]
Форма входа
Поиск
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Файловый архив
Файлы » Общевузовские предметы » Высшая математика

кр 1,вариант 9
Подробности о скачивании 26.02.2013, 23:18
Контрольная работа № 1
по дисциплине
«Высшая математика»
вариант 9

Задание 9
Даны четыре вектора (1,0,5), (3,2,7), (5,0,9) и (-4,2,-12) в некотором базисе. Показать, что векторы , , образуют базис, и найти координаты вектора в этом базисе.
Решение
Базисом в пространстве R3 являются любые три некомпланарных вектора. Условием компланарности трех векторов является равенство их смешанного произведения нулю. Итак, находим:

Так как смешанное произведение векторов не равно нулю, то векторы некомпланарны и образуют базис.
Для вычисления координат вектора в этом базисе составим систему уравнений в координатном виде:

Решим ее по формулам Крамера. Определитель Δ = –32.
Найдем определители .



Имеем ; ; .
Значит, .
Ответ:
Задание 19
Даны координаты вершин пирамиды A1A2A3A4: А1(7,5,3), А2(9,4,4), А3(4,5,7), А4(7,9,6). Найти: 1) длину ребра А1А2; 2) угол между ребрами А1А2 и А1А4; 3) угол между ребром А1А4 и гранью А1А2А3; 4) площадь грани А1А2А3; 5) объём пирамиды; 6) уравнения прямой А1А2; 7) уравнение плоскости А1А2А3; 8) уравнения высоты, опущенной из вершины А4 на грань А1А2А3. Сделать чертёж.
Решение
1. Находим координаты вектора = (9 – 7, 4 – 5, 4 – 3) = (2,–1, 1) и длину ребра = = ≈ 2,45.
2. Угол  между ребрами и вычисляется по формуле
из скалярного произведения.
,
= (7 – 7, 9 – 5, 6 – 3) = (0; 4; 3);
= .
.
Поэтому ; φ =
3. Угол  между ребром и плоскостью - это угол между вектором и его ортогональной проекцией на грань .

Вектор перпендикулярен грани , что вытекает из определения векторного произведения векторов и :
= (4 – 7; 5 – 5; 7 – 3) = (–3; 0; 4).

Синус искомого угла θ равен косинусу между векторами , .
≈–0,8773.
θ = arcsin ≈ –1,07 рад ≈ –61°19′.
4. Площадь грани равна половине модуля векторного произведения векторов и , на которых построена грань.
.
5. Объем пирамиды численно равен одной шестой модуля смешанного произведения векторов , , :
= • |–12 – 32 – 9| = .

6. Для составления уравнений прямой воспользуемся формулой:
,
где – координаты точки , - координаты точки .
;
.
В таком виде уравнения прямой называются каноническими. Они могут быть записаны и в виде
или ,
т.е. уравнение прямой как линии пересечения двух плоскостей.
7. Для составления уравнения плоскости воспользуемся формулой
,
где - координаты , - координаты , - координаты .
; ;
(x – 7) • – (y – 5) • + (z – 3) • =
= –4 • (x – 7) – 11 • (y – 5) – 3 • (z – 3) = 0,
–4 • (x – 7) – 11 • (y – 5) – 3 • (z – 3) =
= –4x + 28 – 11y + 55 – 3z + 9 =
= –4x –11y – 3z + 92 = 0 – уравнение плоскости А1А2А3.
8. Искомые уравнения высоты получим из канонических уравнений прямой , где - точка, лежащая на искомой прямой; - координаты вектора , параллельного искомой прямой. При этом в качестве точки возьмем точку , а в качестве вектора возьмем нормальный вектор плоскости , т.е. . Имеем:
.
9. Сделаем чертеж


Задание 29
Составить уравнение линии, каждая точка которой отстоит от точки A(4,0) вдвое дальше, чем от прямой х = 1.
Решение
Обозначим произвольную точку искомой линии M(x, y). Тогда по условию , где Р – основание перпендикуляра из точки M к прямой х = 1.
|AM| = = ;
|PM| = |x – 1|.
Значит, = 2 • |x – 1|.
Возведем обе части равенства в квадрат:
х2 – 8x + 16 + у2 = 2x – 2;
х2 – 10x + у2 + 14 = 0;
(х2 – 10x + 25) – 25 + у2 + 14 = 0;
(х – 5)2 + у2 – 11 = 0;
(х – 5)2 + у2 = 11.
Это каноническое уравнение окружности с радиусом R = ≈ 3,3 и центром в точке С(5; 0).
Сделаем чертеж:

Задание 39
Доказать совместность данной системы линейных уравнений и решить ее двумя способами: 1) методом Гаусса; 2) средствами матричного исчисления:
Решение
Совместность данной системы проверим по теореме Кронекера-Капелли. С помощью элементарных преобразований найдем ранг матрицы
А =
данной системы и ранг расширенной матрицы
.
Прибавим ко второй строке первую, умноженную на (–2), к третьей строке прибавим первую, умноженную на (–3), получим:
.
К третьей строке прибавим вторую, умноженную на – , получим:
.
Таким образом, ранги основной и расширенной матриц равны 3, т.е. числу неизвестных. Значит, исходная система совместна и имеет единственное решение.
1) Решим систему методом Гаусса. Последней матрице соответствует система:

Прямой ход метода Гаусса завершен. Обратным ходом находим:
х3 = = 2; х2 = (8 + 10 • 2) / 7 = 4; х1 = 6 + 2 • 4 – 3 • 2 = 8.
х1 = 8; х2 = 4; х3 = 2 – решение системы.
2) Решим систему матричным методом. Находим определитель Δ основной матрицы системы:
Δ = = –15 + 24 – 12 – 8 – 20 – 27 = –58;
Так как Δ = –58 0, то значит, находим решение по формуле
или = , где , – алгебраические дополнения элементов матрицы А:
А11 = (–1)1+1 • = –15 – 8 = –23;
А12 = (–1)1+2 • = –(–10 + 12) = –2;
А13 = (–1)1+3 • = –4 – 9 = –13;
А21 = (–1)2+1 • = –(10 + 6) = –16;
А22 = (–1)2+2 • = –5 – 9 = –14;
А23 = (–1)2+3 • = –(–2 + 6) = –4;
А31 = (–1)3+1 • = 8 – 9 = –1;
А32 = (–1)3+2 • = –(–4 – 6) = 10;
А33 = (–1)3+3 • = 3 + 4 = 7.
Составим обратную матрицу:
.
Находим матричное решение системы:
Х = .
Отсюда следует, что х1 = 8; х2 = 4; х3 = 2.

Ответ: х1 = 8; х2 = 4; х3 = 2.

Задание 49
Найти размерность и базис пространства решений однородной системы линейных уравнений

Решение
С помощью элементарных преобразований найдем ранг основной матрицы системы:
.
Поменяем местами первую и третью строки, затем умножим первую строку на (–3) и сложим со второй, умножим первую строку на (–7) и сложим с третьей, получим:
.
Ранг системы равен r = 2, а число неизвестных n = 4. Так как ранг системы меньше числа неизвестных, то система имеет ненулевые решения. Размерность пространства решений этой системы n – r = 4 – 2 = 2. Преобразованная система, эквивалентная исходной, имеет вид:
х1 + х2 +3х3 – 3х4 = 0, х1 + х2 = –3х3 + 3х4,
–х2 –12 х3 +11х4 = 0, х2 = –12х3 + 11х4,
х1 = –3х3 +3х4 +12х3 – 11х4, х1 = 9х3 – 8х4,
х2 = –12х3 + 11х4, х2 = –12х3 + 11х4.
Эти формулы дают общее решение. В векторном виде его можно записать следующим образом:
,
где и – произвольные числа. Вектор-столбцы и образуют базис пространства решений данной системы.
Полагая х3 = с1, х4 = с2, где с1, с2 – произвольные постоянные, получим общее решение в векторном виде .

Задание 59
Найти собственные значения и собственные векторы линейного преобразования, заданного в некотором базисе матрицей.
.
Решение
Составляем характеристическое уравнение матрицы
;
(5 – λ) (3 – λ) (–1 – λ) +4 (5 – λ) = 0;
(5 – λ) (–3 – 3λ + λ+ λ2 +4) = 0;
(5 – λ) (λ2 – 2λ + 1) = 0;
5 – λ = 0 или λ2 – 2λ + 1 = 0;
λ1 = 5; D = 4 – 4 = 0;
λ2,3 = 1.
λ1 = 5, λ2,3 = 1 – собственные значения линейного преобразования.
Для отыскания собственных векторов используем систему уравнений:
(5 – λ)х1 +9х2 + 7х3 = 0,
(3 – λ)х2 –2 х3 = 0,
2х2 + (–1 – λ)х3 = 0,
При λ1 = 5 получим систему:
9 х2 + 7х3 = 0, х1 – любое х1 – любое,
–2х2 –2 х3 = 0, –6х3 –2 х3 = 0 х3 = 0,
2х2 – 6х3 = 0. х2 = 3 х3 х2 =0.
Таким образом, числу λ1 = 1 соответствует собственный вектор
,
где х1 – произвольное действительное число.
В частности, при х1 = 1 имеем .

При λ2,3 = 1 получим систему:
4х1 +9 х2 + 7х3 = 0, 4х1 = 16х3, х1 = 4х3,
2х2 – 2х3 = 0, х2 = х3, х2 = х3,
2х2 –2 х3 = 0, х3 – любое. х3 – любое.
Числу λ2,3 = 1 соответствует собственный вектор
,
где х3 – произвольное действительное число.
В частности, при х3 = 1 имеем .
Итак, матрица А имеет три собственных значения λ1 = 5, λ2 = 1 (кратности 2).
Соответствующие им собственные векторы (с точностью до постоянного множителя) равны и .

Задание 69
Привести к каноническому виду уравнение линии второго порядка, используя теорию квадратичных форм.
6х2 + 2 ху +3у2 = 16.
Решение
Левая часть уравнения 6х2 + 2 ху + 3у2 = 16 представляет собой квадратичную форму с матрицей .
Решаем характеристическое уравнение
т.е. .
(6 – λ)(3 – λ) – 10 = 0;
18 – 9λ + λ2 – 10 = 0;
λ2 – 9λ + 8 = 0;
D = 81 – 32 = 49;
λ1 = (9 – 7) / 2 = 1, λ2 = (9 + 7) / 2 = 8.
λ1 = 1, λ2 = 8 – характеристические числа.
Находим собственные векторы из системы уравнений .
Полагая λ = λ1 = 1, получаем систему уравнений для первого вектора :
х2 = – х1 = – х1 .
Пусть х1 = , тогда х2 = – и – собственный вектор, соответствующий λ1=1.
Полагая λ = λ2 = 8, получаем систему уравнений для второго вектора :
х1 = х2 = х2.
Пусть х2 = , тогда х1 = и – собственный вектор, соответствующий
λ2 = 8.
Нормируем собственные векторы , получаем , . Составляем матрицу перехода от старого базиса к новому , в которой координаты нормированных собственных векторов записаны по столбцам. Выполняя преобразование
или
Найденные для х и у выражения подставим в исходное уравнение кривой:
6 • ( х′ + у′)2 + 2 • ( х′ + у′)(– х′ + у′) + 3 • (– х′ + у′)2 – 16 = 0;
2х′2 + 2 х′у′ + 5у′2 ) + (– х′2 +2х′у′ –5х′у′ + у′2 )+ (5х′2 – 2 х′у′ + 2у′2 )– 16 = 0;
х′2 + х′у′+ у′2 – х′2 – х′у′ + у′2+ х′2– х′у′+ у′2-16=0
х′2 +8у′2 – 16 = 0;
– каноническое уравнение эллипса.
Категория: Высшая математика | Добавил: Shadrov
Просмотров: 1322 | Загрузок: 17
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]