1. Элементы линейной алгебры и аналитической геометрии
1. Даны векторы a(a1; a2; a3), b(b1; b2; b3), c(c1; c2; c3) и d(d1; d2; d3) в некотором базисе. Показать, что векторы a, b, c образуют базис, и найти координаты вектора d в этом базисе. a (4;3;-1), b (5;0;4), c (2;1;2), d (0;12;-6). Векторы a, b, c образуют базис в пространстве R3 в том случае, если равенство a + b + c = 0 выполняется лишь тогда, когда = = = 0. Рассмотрим это условие: (4;3;-1) + (5;0;4) + (2;1;2) = (0;0;0) или
Рассмотрим матрицу данной системы и приведем ее к треугольному виду: Умножим первую строку на -3, вторую на 4 и сложим их, умножим третью на 4 и сложим c первой ; умножим третью строку на 15, вторую на 21 и сложим их . Так как число ненулевых строк в треугольной матрице равно числу переменных, то система имеет единственное решение, а именно = = = 0. Значит, векторы a, b, c образуют базис. Вектор d в базисе a, b, c имеет вид: 1a + 1b + 1c = d. В расширенном виде:
Рассмотрим расширенную матрицу системы и приведем ее к треугольному виду (см. предыдущие действия):
Получим систему: Значит, вектор d в базисе a, b, c имеет координаты d(2;-4;6).
16. Даны координаты вершины пирамиды А1А2А3А4 .Найти: 1) длину ребра А1А2; 2) угол между ребрами А1А2 и А1А4; 3) угол между ребром А1А4 и гранью А1А2А3; 4) площадь грани А1А2А3; 5) объём пирамиды; 6) уравнение прямой А1А2; 7) уравнение плоскости А1А2А3; 8) уравнения высоты, опущенной из вершины А4 на грань А1А2А3; Сделать чертёж. А1(0;7;1), А2(4;1;5),А3(4;6;3), А4(3;9;8) 1) Длина ребра А1А2 равна расстоянию между этими точками, которое находится по формуле : А
2) Угол между рёбрами А1А2 и А1А4 равен углу между векторами А1А2 и А1А4. Найдём координаты этих векторов. А1А2 =(4-0;1-7;5-1)=(4;-6;4) А1А4=(3-0;9-7;8-1)=(3;2;7) Тогда, если φ угол между векторами А1А2 и А1А4, то
Тогда 3) Угол между ребром А1А4 и гранью А1А2А3 найдём следующим образом: для начала узнаем уравнение грани А1А2А3, затем выпишем нормальный вектор этой грани, найдём угол между нормалью к грани А1А2А3 и вектором А1А4. Тогда искомый угол между гранью А1А2А3 и вектором А1А4 есть разность 900 и полученного последнего угла. Уравнение плоскости А1А2А3 получим как уравнение плоскости, проходящей через три точки, а именно или
Значит, нормальный вектор будет иметь координаты N=(-2;2;5). Найдём угол между нормалью к грани А1А2А3 и вектором А1А4.
Тогда Значит, угол между гранью А1А2А3 и вектором А1А4 равен 33,60. 4) Найдём координаты векторов А1А2 и А1А3. А1А2 =(4-0;1-7;5-1)=(4;-6;4) А1А3=(4-0;6-7;3-1)=(4;-1;2) Тогда площадь грани А1А2А3 будет равна ед2 5) Объём треугольной пирамиды равен одной шестой объема параллелепипеда, построенного на рёбрах А1А2 , А1А3, А1А4. Тогда (ед3) 6) Уравнение прямой А1А2 имеет вид: , где (x0;y0;z0 ) – координаты точки, через которую проходит прямая, а (l;m;n) – координаты направляющего вектора. За координаты (x0;y0;z0 ) можно выбрать координаты точки А1, а за направляющий вектор взять вектор А1А2. Тогда получим: – уравнение прямой А1А2 в симметричном виде. 7) Уравнение плоскости А1А2А3 было найдено в пункте 3), а именно – уравнение плоскости в нормальном виде. 8) Высота, опущенная из вершины А4 на грань А1А2А3 имеет своим направляющим вектором нормальный вектор плоскости А1А2А3 , а значит - уравнение высоты в симметричном виде. Сделаем чертёж.
26. Составить уравнение линии, для каждой точки расстояния от начала координат и от точки А(0,5) относятся, как 3:2. Пусть M(x;y) – произвольная точка искомой кривой. Найдем нужные расстояния: d = = – расстояние от начала координат до произвольной точки кривой; d = = – расстояние от точки А до произвольной точки кривой. Тогда или ;
Это окружность с центром в точке (0;9) и радиусом равным 6.
36. Доказать совместность данной системы линейных уравнений и решить ее двумя способами: 1) методом Гаусса; 2) средствами матричного исчисления.
1) Для решения системы методом Гаусса рассмотрим расширенную матрицу системы и приведем ее к треугольному виду: = [умножаем первую строку на -4, вторую на 7 и складываем их, умножаем первую на -2, третью на 7 и складываем их ] = = [умножаем третью строку на 97, вторую на -31 и складываем их] = Ранг расширенной матрицы равен числу ненулевых строк, т.е. равен 3. Теперь рассмотрим матрицу А и приведём её к треугольному виду аналогичными действиями: . Ранг матрицы равен числу ненулевых строк, т.е. равен 3. Так как ранг матрицы системы совпадает с рангом расширенной матрицы, то система совместна. Тогда получим систему:
Тогда получим решение: x3 = -3; x2 = -4; x1 =2. 2) Для решения матричным методом нужно рассмотреть матричное уравнение: AX = B, где A = , X = , B = . Тогда X = A-1B.
Вычислим обратную матрицу .
Тогда A-1 = Получим X = A-1B = = = .
46. Найти размерность и базис пространства решений однородной системы линейных уравнений
Рассмотрим расширенную матрицу системы и приведем ее к треугольному виду: = [умножаем первую строчку на -2 складываем со второй, умножаем первую на -1 и складываем с третьей] = = [складываем вторую строку с третьей] = . Ранг расширенной матрицы равен числу ненулевых строк, т.е. равен 3. Теперь рассмотрим матрицу А и приведём её к треугольному виду аналогичными действиями: . Ранг матрицы равен числу ненулевых строк, т.е. равен 3. Так как ранг матрицы системы совпадает с рангом расширенной матрицы, то система совместна. Тогда получим систему:
Пусть х3=t, тогда получим решение: х4=0, x3 = t; x2 = ; x1 = , где t – любое число.
56. Найти собственные значения и собственные векторы линейного преобразования, заданного в некотором базисе матриц.
Характеристическое уравнение имеет вид:
1=-2, 2=1, 3=9 – собственные значения линейного преобразования. Для 1=-2 найдём собственный вектор.
Собственный вектор для 1=-2 имеет вид (0;m;0). Для 2=1 найдём собственный вектор.
Собственный вектор для 2=1 имеет вид ( ; ;t). Для 3=9 найдём собственный вектор. . Собственный вектор для 3=9 имеет вид (s; ; s).
66. Привести к каноническому виду уравнение линии второго порядка, используя теорию квадратичных форм
Запишем данное уравнение в виде: Найдём матрицу Т ортогонального оператора, приводящего данную квадратичную форму к каноническому виду. Запишем характеристическую матрицу:
Её корнями являются значения 1=1, 2=10. Для 1=1 найдём собственный вектор. , где t – любое число. Собственный вектор-столбец для 1=1 имеет вид . Тогда есть нормированный собственный вектор-столбец. Для 2=10 найдём собственный вектор. , где s – любое число. Собственный вектор-столбец для 2=10 имеет вид . Тогда есть нормированный собственный вектор-столбец. Ортогональный оператор, приводящий квадратичную форму к каноническому виду, имеет матрицу . Базисными векторами новой системы координат являются:
В системе координат уравнение данной фигуры примет вид:
Это эллипс, центр которого находится в точке (0,0) относительно системы координат , а оси симметрии параллельны координатным осям этой системы.