Высшая математика. Контрольная работа №8. Тема: Функции комплексной переменной и операционное исчисление.
366.Представить заданную функцию w=f(z), где z=x+iy, в виде w=u(x,y)+iv(x,y); проверить, является ли она аналитической. Если да, то найти значение её производной в заданной точке z0:
376.Разложить функцию f(z) в ряд Лорана в окрестности точки z0:
386.Определить область (круг) сходимости данного ряда и исследовать сходимость его (расходится, сходится условно, сходится абсолютно) в точках z1, z2, z3:
396.При помощи вычетов вычислить данный интеграл по контуру l:
406.Найти изображение заданного оригинала f(t):
416. Найти изображение заданного оригинала f(t):
426.Методом операционного исчисления найти частное решение дифференциального уравнения, удовлетворяющее заданным начальным условиям: