bsuir.info
БГУИР: Дистанционное и заочное обучение
(файловый архив)
Вход (быстрый)
Регистрация
Категории каталога
Другое [37]
Белорусский язык [248]
ВОВ [92]
Высшая математика [468]
Идеология [114]
Иностранный язык [633]
История Беларуси [248]
Культурология [42]
Логика [259]
НГиИГ [120]
Основы права [8]
Основы психологии и педагогики [7]
Охрана труда [7]
Политология [179]
Социология [120]
Статистика [31]
ТВиМС [83]
Техническая механика [43]
ТЭЦ [85]
Физика [146]
Философия [169]
Химия [76]
Экология [35]
Экономика предприятия [35]
Экономическая теория [170]
Электротехника [35]
ЭПиУ [44]
Этика [5]
Форма входа
Поиск
Статистика

Онлайн всего: 2
Гостей: 2
Пользователей: 0
Файловый архив
Файлы » Общевузовские предметы » Высшая математика

КР 3, Вар 3
Подробности о скачивании 18.10.2011, 01:09
3.Дифференциальное исчисление
123. Найти производную данных функций:
а)
б)


в)


г)
Прологарифмируем обе части уравнения и преобразуем равенство Прологарифмируем обе части равенства


д)
Дифференцируем обе части равенства, учитывая, что у есть функция от х, получим
или



133. Найти и
а) y= x2lnx



б) х=t+½sin2t
y=cos3t


Находим


143.В прямоугольной системе координат через точку (1;2) проведена прямая с отрицательным угловым коэффициентом, которая вместе с осями координат образует треугольник. Каковы должны быть отрезки, отсекаемые прямой на осях координат, чтобы площадь треугольника была наименьшей?

Уравнение прямой задается уравнением y=kx+b, т.к. прямая проходит через точку (1;2), то подставляя координаты в уравнение, получим
2=k+b
k=2-b (*)
где к<0 (т.к. прямая АВ образует с Ох тупой угол) и b>2
Найдем отрезки, которые отсекает прямая с осями координат:
с Оу: х=0 у=b, след. длина отрезка ОА=b;
с Ох: у=0 kx+b=0 , подставим вместо k замену (*) получим . Длина отрезка ОВ= .
Площадь треугольника равна
S(b)=


=0 при b=4, b=0 ( не удовлетворяет условию b>2) ,

b=4 точка минимума функции. Значит площадь треугольника, на отсекаемых прямой на осях принимает наименьшее значение при ОА=4 и ОВ=

153. Провести полное исследование функции и построить ее график

1) Область определения D(y)=
2) Т.к. область определения не симметрична относительно начала координат, то функция не является ни четной, ни нечетной.
3) Точки пресечения с осями координат
с Ох : у=0 х=0 т.(0; 0)
с Оу: х=0 у= 0 т.(0; 0)
4) Функция непериодическая.
5) Асимптоты
Т.к. точка разрыва 1, то находим пределы :

Прямая х=1 вертикальная асимптота.

Значит, у=0 горизонтальная асимптота
Проверим, существует ли наклонная асимптота.
, т.е. наклонной асимптоты нет.
5)Промежутки возрастания, убывания, точки экстремума


=0 х=-1 критическая точка

Функция возрастает на промежутке (-1;1) и убывает на промежутках (-∞;-1) и (1;0), х=-1 точка минимума у(-1)= 0,25, х=1 точка разрыва функции
6) Выпуклость, вогнутость функции

=0 при х=-2, т.е.

Функция вогнута на промежутках (-2;1) и (1; +∞) и выпукла на промежутке (-∞;-2).
По результатам исследования функции строим график.


163. Дана функция . Показать, что
Найдем



, что и требовалось показать.

173. Даны функции и две точки А(-2,2) и В(-2,02;2,05). Требуется: 1) вычислить значение z1 функции в точке В; 2) вычислить приближенное значение z1 функции в точке В, исходя из значений z0 функции в точке А, заменив приращение функции при переходе от точки А к точке В дифференциалом, и оценить в процентах относительную погрешность, возникающую при замене приращения функции её дифференциалом; 3) составить уравнение касательной плоскости к поверхности z=f(x,y) в точке С(х0,у0,z0).
1)
2) Будем рассматривать z(B) как частное значение функции при x = -2.02 = x1, у = 2.05 = у1. За x0 принимаем число -2, за у0 –число 2.
Тогда z(x0,y0) = ;
Переведём dx в радианы dx = x1 – x0 = -2,02+2=-0,02,
dy = y1 –y0 = 2,05-2= 0,05

Тогда получим:
 z(x0,y0) + (x0,y0)dx+ (x0,y0)dy=12-5*(-0.02)+5*0.05=12.35
Оценим погрешность: %
3) Составим уравнение касательной плоскости к поверхности z=f(x,y) в точке С(1,2,11). Искомое уравнение имеет вид: .
Категория: Высшая математика | Добавил: natalie_che
Просмотров: 1951 | Загрузок: 54
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]