bsuir.info
БГУИР: Дистанционное и заочное обучение
(файловый архив)
Вход (быстрый)
Регистрация
Категории каталога
Другое [37]
Белорусский язык [248]
ВОВ [92]
Высшая математика [468]
Идеология [114]
Иностранный язык [633]
История Беларуси [248]
Культурология [42]
Логика [259]
НГиИГ [120]
Основы права [8]
Основы психологии и педагогики [7]
Охрана труда [7]
Политология [179]
Социология [120]
Статистика [31]
ТВиМС [83]
Техническая механика [43]
ТЭЦ [85]
Физика [146]
Философия [169]
Химия [76]
Экология [35]
Экономика предприятия [35]
Экономическая теория [170]
Электротехника [35]
ЭПиУ [44]
Этика [5]
Форма входа
Поиск
Статистика

Онлайн всего: 3
Гостей: 3
Пользователей: 0
Файловый архив
Файлы » Общевузовские предметы » Высшая математика

1 курс кр.1 вар.9
Подробности о скачивании 26.04.2011, 00:52
№9
Даны четыре вектора , , и , заданные в декартовой системе координат. Требуется: 1) вычислить скалярное произведение ; 2) вычислить векторное произведение ; 3) показать, что векторы образуют базис и найти координаты вектора в этом базисе.
Дано: ; ; ; .
1) Найдём значение в скобках : умножаем координаты вектора (-2; 5; 2) на 2 и от полученного вектора 2 (-4; 10; 4) отнимаем координаты вектора (0; 1; -2). В результате получим 2 - = (-4; 10; 4).
Так как скалярное произведение в ортогональном базисе ровно сумме произведений соответствующих координат, то получается
.
2) По аналогии с пунктом 1 найдём значение вектора

Тогда векторное произведение найдём по формуле

:
3) Базисом в пространстве являются любые три некомпланарных вектора. Условием компланарности трех векторов, заданных в декартовой системе координат, является равенство их смешанного произведения нулю. Отсюда находим:

Значит векторы некомпланарны и поэтому они образуют базис. Составим систему уравнений в координатном виде:

где координаты вектора в базисе , и найдём .
Определитель найден выше: .
;


Имеем: ; ; .
Значит, .

№19
Даны координаты вершин пирамиды . Найти: 1) длину ребра ; 2) уравнение прямой ; 3) угол между рёбрами и ; 4) уравнение плоскости ; 5) угол между ребром и гранью ; 6) уравнение высоты, опущенной из вершины на грань ; 7) площадь грани ; 8) объём пирамиды; 9) сделать чертёж.
Дано: ; ; ; .
1) Длина ребра численно равна расстоянию между точками и , которое в декартовой системе координат вычисляется по формуле
,
где координаты точки , координаты точки .
Таким образом, вычисляем:
.

2) Для составления уравнений прямой воспользуемся формулой: , где координаты точки , координаты точки . Тогда .
В таком виде уравнения прямой называются каноническими. Они могут быть записаны и в виде
или
т.е. уравнение прямой как линии пересечения двух плоскостей.
3) Угол  между рёбрами и вычисляется по формуле из скалярного произведения векторов и .
Находим: ; ;
; ;
.
Поэтому , .

4) Для составления уравнения плоскости воспользуемся формулой , где координаты точки , координаты точки , координаты точки .
.

5) Угол  между ребром и плоскостью – это угол между вектором и его ортогональной проекцией на грань .


Вектор перпендикулярен грани , что вытекает из определения векторного произведения векторов и
Вектор перпендикулярен грани , что вытекает из определения векторного произведения векторов и :
Здесь , . Как и в пункте 3, находим:

Отсюда получаем, что .
6) Искомое уравнение высоты получим из канонических уравнений прямой , где точка, лежащая на искомой прямой; координаты вектора , параллельного искомой прямой. При этом в качестве точки возьмем точку , а в качестве вектора возьмем нормальный вектор плоскости , т.е. . Имеем .
7) Площадь грани находим, используя геометрический смысл векторного произведения:
.
8) Объем пирамиды численно равен одной шестой модуля смешанного произведения векторов , , , которое находится по формуле .
Таким образом, .
9) Сделаем чертёж:

№29
Найти координаты точки , симметричной точке относительно прямой .
Решение
Составим уравнение плоскости Р, проходящей через точку перпендикулярно прямой L, т.е. нормальный вектор Р есть :
.
Решив совместно уравнения L и Р, получим точку N пересечения L с Р: . Но так как N –середина отрезка , то
.
Таким образом, точка М имеет координаты .

№39
Составить уравнение линии, каждая точка которой отстоит от точки вдвое дальше, чем от прямой .
Решение

Пусть точка M (x;y) лежит на данной линии (рис.1), тогда расстояние от М до прямой x=1 равна , а до точки A:

Возведём в квадрат

Получим:

Таким образом уравнение гиперболы .

Категория: Высшая математика | Добавил: Set_Draner
Просмотров: 1231 | Загрузок: 43
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]