Задание №1.20 Из колоды в 36 карт (6, 7, 8, 9, 10, В, Д, К, Т) наугад извлекаются три карты. Определить вероятность того, что будут вытащены карты одной масти. Задание №2.20 Приведена схема соединения элементов, образующих цепь с одним входом и одним выходом. Предполагается, что отказы элементов являются независимыми в совокупности событиями. Отказ любого из элементов приводит к прерыванию сигнала в той ветви цепи, где находится данный элемент. Вероятности отказа элементов 1, 2, 3, 4, 5 соответственно равны p1=0,1; p2=0,2; p3=0,3; p4=0,4; p5=0,5 p6=0,6. Найти вероятность того, что сигнал пройдет с входа на выход. Задание №3.20 Прибор состоит из трех блоков. Исправность каждого блока необходима для функционирования устройства. Отказы блоков независимы. Вероятности безотказной работы блоков соответственно равны 0,6; 0,7; 0,8. В результате испытаний два блока вышли из строя. Определить вероятность того, что отказали второй и третий блоки. Задание №4.20 A - изготовление продукции высшего сорта p(A)=0.9 q(A)=1-p(A)=1-0.9=0.1 m0=340 - наивероятнейшее число изделий высшего сорта Определить сколько необходимо изготовить изделий высшего сорта Задание №5.20 Дискретная случайная величина Х может принимать одно из пяти фиксированных значений x1, x2, x3, x4, x5 с вероятностями p1, p2, p3, p4, p5 соответственно. Вычислить математическое ожидание и дисперсию величины Х. Рассчитать и построить график функции распределения.