Три стрелка делают по одному выстрелу по одной и той же цели. Вероятности поражения целей равны соответственно р1 = 0,9, р2 = 0,8, р3 = 0,7. Найти вероятности того, что: а) все три стрелка попадают в цель; б) только один из них попадает в цель; в) хотя бы один стрелок попадает в цель. Обозначим события: А – все 3 стрелка попадают в цель; В – только один стрелок попадает в цель; С – хотя бы один стрелок попадает в цель. Вероятности промахов равны соответственно: q1 = 0,1, q2 = 0,2, q3 = 0,3.
Вероятность наступления события в каждом из одинаковых независимых испытаний равна 0,02. Найти вероятность того, что в 150 испытаниях событие наступит ровно 5 раз У нас n достаточно великó, р малó, λ = np = 150 ∙ 0,02 = 3 < 9, k = 5. Справедливо равенство Пуассона: . Таким образом,
№ 21
По данному закону распределения дискретной случайной величины Х определить математическое ожидание М(Х), дисперсию D(X) и среднее квадратическое отклонение σ(Х).
а) дифференциальную функцию f(x) (плотность вероятности); б) математическое ожидание и дисперсию величины х; в) вероятность того, что X примет значение, принадлежащее интервалу ;
г) построить графики функций F(x) и f(x).
Последовательно получаем:
а) ;
в) Р(a < x < b) = F(b) – F(a) P = F(1) – F = – 0 = . Графики функций поданы далее.
№ 41
Определить вероятность того, что нормально распределённая величина Х примет значение, принадлежащее интервалу (α; β) если известны математическое ожидание а и среднее квадратическое отклонение σ. Данные: α = 2; β = 13; а = 10; σ = 4.
Используем формулу Р(α < x < β) = Имеем: Р(2 < x < 13) = = Ф – Ф(–2). Поскольку функция Лапласа есть нечетная, можем записать:
Для решения задачи введём условную переменную , где С – одно из значений хі, как правило, соответствующее наибольшему значению mі , а h – это шаг (у нас h = 1,8). Пусть С = 11,2. Тогда . Заполним таблицу:
Уравнение регрессии в общем виде: Таким образом, упрощая, окончательно получим искомое уравнение регрессии: Необходимо произвести проверку полученного уравнения регрессии при, по крайней мере, двух значениях х. 1) при х = 12 по таблице имеем
Отмечаем хорошее совпадение эмпирических и теоретических данных.
Вариант 2
№ 2
Для сигнализации об аварии установлены 3 независимо работающие устройства. Вероятности их срабатывания равны соответственно р1 = 0,9, р2 = 0,95, р3 = 0,85. Найти вероятности срабатывания при аварии: а) только одного устройства; б только двух устройств; в) всех трёх устройств.
Обозначим события: А – срабатывает только одно устройство; В – срабатывают 2 устройства; С – срабатывают все 3 устройства. Вероятности противоположных событий (не срабатывания) соответственно равны q1 = 0,1, q2 = 0,05, q3 = 0,15. Тогда
В партии из 1000 изделий имеется 10 дефектных. Найти вероятность того, что из взятых наудачу из этой партии 50 изделий ровно 3 окажутся дефектными. По условию n = 50, k = 3. Поскольку р малó, n достаточно большое, в то же время nр = 0,5 < 9, справедлива формула Пуассона: . Таким образом,
№ 22
По данному закону распределения дискретной случайной величины Х определить математическое ожидание М(Х), дисперсию D(X) и среднее квадратическое отклонение σ(Х).
а) дифференциальную функцию f(x) (плотность вероятности); б) математическое ожидание и дисперсию величины х; в) вероятность того, что X примет значение, принадлежащее интервалу
;
г) построить графики функций F(x) и f(x). Последовательно получаем: а) ;
в) Р(a < x < b) = F(b) – F(a) P = F(1) – F =
Графики функций приводятся далее.
№ 42
Определить вероятность того, что нормально распределённая величина Х примет значение, принадлежащее интервалу (α; β) если известны математическое ожидание а и среднее квадратическое отклонение σ. Данные: α = 5; β = 14; а = 9; σ = 5. Используя формулу имеем
Поскольку функция Лапласа есть нечетная, можем записать:
Определить: а) выборочную среднюю; б) выборочную дисперсию; в) выборочное среднее квадратическое отклонение. Для решения задачи введём условную переменную где С – одно из значений хі , как правило, соответствующее наибольшему значению mі , а h – это шаг (у нас h = 0,4). Пусть С = 8,8. Тогда Заполним таблицу:
Уравнение регрессии в общем виде: Таким образом, упрощая, окончательно получим искомое уравнение регрессии: Необходимо произвести проверку полученного уравнения регрессии при, по крайней мере, двух значениях х. 1) при х = 12 по таблице имеем
по уравнению: ух=12 = 2,266∙12 + 2,752 = 29,944; ε1 = 30,484 – 29,944 = 0,54; 2) при х = 16 по таблице имеем по уравнению: ух=16 = 2,266∙16 + 2,752 = 39,008; ε2 = 39,167 – 39,008 = 0,159. Отмечаем хорошее совпадение эмпирических и теоретических данных.