bsuir.info
БГУИР: Дистанционное и заочное обучение
(файловый архив)
Вход (быстрый)
Регистрация
Категории каталога
Другое [37]
Белорусский язык [227]
ВОВ [88]
Высшая математика [434]
Идеология [105]
Иностранный язык [596]
История Беларуси [214]
Культурология [41]
Логика [253]
НГиИГ [108]
Основы права [7]
Основы психологии и педагогики [6]
Охрана труда [7]
Политология [148]
Социология [95]
Статистика [30]
ТВиМС [78]
Техническая механика [41]
ТЭЦ [78]
Физика [143]
Философия [146]
Химия [72]
Экология [35]
Экономика предприятия [32]
Экономическая теория [152]
Электротехника [35]
ЭПиУ [39]
Этика [5]
Форма входа
Логин:
Пароль:
Поиск
Статистика

Онлайн всего: 3
Гостей: 3
Пользователей: 0
Файловый архив
Файлы » Общевузовские предметы » Высшая математика

ЭЭБ (д.), Высшая математика, Контрольная работа №7, вар.2, 2017
Подробности о скачивании 17.05.2017, 11:27
Задание 1. Найти решение дифференциального уравнения 1-го порядка.

Решение:
Это уравнение с разделяющимися переменными. Разделив почленно на , получим


где .
Потенцируя последнее равенство, получим и, освобождаясь от модуля, получим или , где С – произвольная постоянная, отличная от нуля (как положительная, так и отрицательная). Разделив на , мы могли потерять решения, обращающие в нуль произведение . Полагая , находим, что . Непосредственная подстановка их в уравнение показывает, что они не являются решениями.
Таким образом, все решения содержатся в общем интеграле
, что и является ответом.
Ответ: .

Задание 2. Найти общее решение дифференциального уравнения 1-го порядка.

Решение:

Так как ,
то это уравнение в полных дифференциалах.
Тогда .
Найдем
; ; .
Окончательно – общий интеграл дифференциального уравнения.
Ответ: .

Задание 3. Найти частное решение дифференциального уравнения 1-го порядка.

Решение:
Для заданного уравнения Бернулли , поэтому сделаем подстановку
.
Дифференцируя обе части уравнения, получим
.
Разделим обе части исходного дифференциального уравнения на :
.
Введем замену:
Подставляя и , находим:
,
.
Получили линейное неоднородное дифференциальное уравнение 1-го порядка. Будем искать его решение в виде

Подставив и в исходное уравнение, получим

Запишем систему:


, т.е. рассматриваем частное решение.
подставим во второе уравнение системы.



Заменяя , получили общее решение дифференциального уравнения
.
Разделив на , мы могли потерять решения, обращающие в нуль . Полагая , находим, что . Непосредственная подстановка в уравнение показывает, что он не является решением.
Таким образом, все решения содержатся в общем решении
.
Находим частное решение :
.
Исходное частное решение имеет вид
.
Ответ: .

Задание 4. Найти частное решение дифференциального уравнения, удовлетворяющее указанным начальным условиям.

Решение:
Рассмотрим соответствующее однородное линейное уравнение . Его характеристическое уравнение имеет вид . Корни уравнения различны и действительны. Значит, общее решение соответствующего однородного уравнения имеет вид . Правая часть исходного уравнения , т.е. не является корнем характеристического уравнения, поэтому частное решение ищем в виде
.
Для нахождения коэффициентов продифференцируем дважды и подставим в первоначальное уравнение:
,
.
После приведения подобных членов получим
.
Приравнивая коэффициенты при одинаковых степенях в левой и правой частях тождественного равенства, получим
.
Таким образом,
и общее решение данного уравнения имеет вид:
.
Чтобы найти решение, удовлетворяющее начальным условиям , продифференцируем общее решение

и решим относительно и систему уравнений
.
Исходное частное решение имеет вид
.
Ответ: .

Задание 5. Найти общее решение системы уравнений (рекомендуем решать с помощью характеристического уравнения).

Решение:
Применим метод исключения. Для этого дифференцируем первое уравнение по t
.
Из первого уравнения выражаем

и, подставив в предыдущее уравнение, получим
.
Это однородное линейное уравнение с постоянными коэффициентами. Для его решения составим характеристическое уравнение , корни которого .
Тогда общее решение однородного уравнения имеет вид .
Находим

Таким образом, общее решение имеет вид
;

Ответ: ;
Категория: Высшая математика | Добавил: blondalexa
Просмотров: 75 | Загрузок: 2
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]